Column chromatography
   HOME

TheInfoList



OR:

Column chromatography in
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
is a
chromatography In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system ( ...
method used to isolate a single
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
from a mixture. Chromatography is able to separate substances based on differential adsorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents (normal phase, reversed phase, or otherwise) can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column. A thin-layer chromatograph can show how a mixture of compounds will behave when purified by column chromatography. The separation is first optimised using thin-layer chromatography before performing column chromatography.


Column preparation

A column is prepared by packing a solid adsorbent into a cylindrical glass or plastic tube. The size will depend on the amount of compound being isolated. The base of the tube contains a filter, either a cotton or glass wool plug, or glass frit to hold the solid phase in place. A solvent reservoir may be attached at the top of the column. Two methods are generally used to prepare a column: the dry method and the wet method. For the dry method, the column is first filled with dry stationary phase powder, followed by the addition of mobile phase, which is flushed through the column until it is completely wet, and from this point is never allowed to run dry. For the wet method, a
slurry A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal p ...
is prepared of the
eluent In analytical and organic chemistry, elution is the process of extracting one material from another by washing with a solvent; as in washing of loaded ion-exchange resins to remove captured ions. In a liquid chromatography experiment, for exa ...
with the stationary phase powder and then carefully poured into the column. The top of the silica should be flat, and the top of the silica can be protected by a layer of sand. Eluent is slowly passed through the column to advance the organic material. The individual components are retained by the stationary phase differently and separate from each other while they are running at different speeds through the column with the eluent. At the end of the column they elute one at a time. During the entire chromatography process the eluent is collected in a series of
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
s. Fractions can be collected automatically by means of fraction collectors. The productivity of chromatography can be increased by running several columns at a time. In this case multi stream collectors are used. The composition of the eluent flow can be monitored and each fraction is analyzed for dissolved compounds, e.g. by analytical chromatography, UV absorption spectra, or
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
. Colored compounds (or fluorescent compounds with the aid of a UV lamp) can be seen through the glass wall as moving bands.


Stationary phase

The ''stationary phase'' or ''adsorbent'' in column chromatography is a solid. The most common stationary phase for column chromatography is
silica gel Silica gel is an amorphous and porous form of silicon dioxide (silica), consisting of an irregular tridimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain water or some other l ...
, the next most common being alumina.
Cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wa ...
powder has often been used in the past. A wide range of stationary phases are available in order to perform
ion exchange chromatography Ion chromatography (or ion-exchange chromatography) separates ions and polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including large proteins, small nucleotides, and amino acid ...
,
reversed-phase chromatography Reversed-phase chromatography (also called RPC, reverse-phase chromatography, or hydrophobic chromatography) includes any chromatographic method that uses a hydrophobic stationary phase. RPC refers to liquid (rather than gas) chromatography. St ...
(RP),
affinity chromatography Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the ...
or expanded bed adsorption (EBA). The stationary phases are usually finely ground powders or gels and/or are microporous for an increased surface, though in EBA a fluidized bed is used. There is an important ratio between the stationary phase weight and the dry weight of the analyte mixture that can be applied onto the column. For silica column chromatography, this ratio lies within 20:1 to 100:1, depending on how close to each other the analyte components are being eluted.


Mobile phase (eluent)

The ''mobile phase'' or ''
eluent In analytical and organic chemistry, elution is the process of extracting one material from another by washing with a solvent; as in washing of loaded ion-exchange resins to remove captured ions. In a liquid chromatography experiment, for exa ...
'' is a
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
or a mixture of solvents used to move the compounds through the column. It is chosen so that the
retention factor In chromatography, the retardation factor (''R'') is the fraction of an analyte An analyte, component (in clinical chemistry), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The purest ...
value of the compound of interest is roughly around 0.2 - 0.3 in order to minimize the time and the amount of eluent to run the chromatography. The eluent has also been chosen so that the different compounds can be separated effectively. The eluent is optimized in small scale pretests, often using
thin layer chromatography Thin-layer chromatography (TLC) is a chromatography technique used to separate non-volatile mixtures. Thin-layer chromatography is performed on a sheet of an inert substrate such as glass, plastic, or aluminium foil, which is coated with a t ...
(TLC) with the same stationary phase, using solvents of different polarity until a suitable solvent system is found. Common mobile phase solvents, in order of increasing polarity, include
hexane Hexane () is an organic compound, a straight-chain alkane with six carbon atoms and has the molecular formula C6H14. It is a colorless liquid, odorless when pure, and with boiling points approximately . It is widely used as a cheap, relative ...
,
dichloromethane Dichloromethane (DCM or methylene chloride, methylene bichloride) is an organochlorine compound with the formula . This colorless, volatile liquid with a chloroform-like, sweet odour is widely used as a solvent. Although it is not miscible wit ...
,
ethyl acetate Ethyl acetate ( systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula , simplified to . This colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues ...
,
acetone Acetone (2-propanone or dimethyl ketone), is an organic compound with the formula . It is the simplest and smallest ketone (). It is a colorless, highly volatile and flammable liquid with a characteristic pungent odour. Acetone is miscibl ...
, and
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is ...
. A common solvent system is a mixture of hexane and ethyl acetate, with proportions adjusted until the target compound has a retention factor of 0.2 - 0.3. Contrary to common misconception, methanol alone can be used as an eluent for highly polar compounds, and does not dissolve silica gel. There is an optimum flow rate for each particular separation. A faster flow rate of the eluent minimizes the time required to run a column and thereby minimizes diffusion, resulting in a better separation. However, the maximum flow rate is limited because a finite time is required for the analyte to equilibrate between the stationary phase and mobile phase, see
Van Deemter's equation The van Deemter equation in chromatography, named for Jan van Deemter, relates the variance per unit length of a separation column to the linear mobile phase velocity by considering physical, kinetic, and thermodynamic properties of a separation ...
. A simple laboratory column runs by
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
flow. The flow rate of such a column can be increased by extending the fresh eluent filled column above the top of the stationary phase or decreased by the tap controls. Faster flow rates can be achieved by using a pump or by using compressed gas (e.g. air,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, or
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice a ...
) to push the solvent through the column (flash column chromatography). The particle size of the stationary phase is generally finer in flash column chromatography than in gravity column chromatography. For example, one of the most widely used silica gel grades in the former technique is mesh 230 – 400 (40 – 63 µm), while the latter technique typically requires mesh 70 – 230 (63 – 200 µm) silica gel. A spreadsheet that assists in the successful development of flash columns has been developed. The spreadsheet estimates the retention volume and band volume of analytes, the fraction numbers expected to contain each analyte, and the resolution between adjacent peaks. This information allows users to select optimal parameters for preparative-scale separations before the flash column itself is attempted.


Automated systems

Column chromatography is an extremely time-consuming stage in any lab and can quickly become the bottleneck for any process lab. Many manufacturers like Biotage, Buchi, Interchim and Teledyne Isco have developed automated flash chromatography systems (typically referred to as LPLC, low pressure liquid chromatography, around ) that minimize human involvement in the purification process. Automated systems will include components normally found on more expensive
high performance liquid chromatography High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to p ...
(HPLC) systems such as a gradient pump, sample injection ports, a UV detector and a fraction collector to collect the eluent. Typically these automated systems can separate samples from a few milligrams up to an industrial many kilogram scale and offer a much cheaper and quicker solution to doing multiple injections on prep-HPLC systems. The resolution (or the ability to separate a mixture) on an LPLC system will always be lower compared to HPLC, as the packing material in an HPLC column can be much smaller, typically only 5 micrometre thus increasing stationary phase surface area, increasing surface interactions and giving better separation. However, the use of this small packing media causes the high back pressure and is why it is termed high pressure liquid chromatography. The LPLC columns are typically packed with silica of around 50 micrometres, thus reducing back pressure and resolution, but it also removes the need for expensive high pressure pumps. Manufacturers are now starting to move into higher pressure flash chromatography systems and have termed these as medium pressure liquid chromatography (MPLC) systems which operate above .


Column chromatogram resolution calculation

Typically, column chromatography is set up with peristaltic pumps, flowing buffers and the solution sample through the top of the column. The solutions and buffers pass through the column where a fraction collector at the end of the column setup collects the eluted samples. Prior to the fraction collection, the samples that are eluted from the column pass through a detector such as a spectrophotometer or
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
so that the concentration of the separated samples in the sample solution mixture can be determined. For example, if you were to separate two different proteins with different binding capacities to the column from a solution sample, a good type of detector would be a spectrophotometer using a wavelength of 280 nm. The higher the concentration of protein that passes through the eluted solution through the column, the higher the absorbance of that wavelength. Because the column chromatography has a constant flow of eluted solution passing through the detector at varying concentrations, the detector must plot the concentration of the eluted sample over a course of time. This plot of sample concentration versus time is called a chromatogram. The ultimate goal of chromatography is to separate different components from a solution mixture. The resolution expresses the extent of separation between the components from the mixture. The higher the resolution of the chromatogram, the better the extent of separation of the samples the column gives. This data is a good way of determining the column's separation properties of that particular sample. The resolution can be calculated from the chromatogram. The separate curves in the diagram represent different sample elution concentration profiles over time based on their affinity to the column resin. To calculate resolution, the retention time and curve width are required. Retention time is the time from the start of signal detection by the detector to the peak height of the elution concentration profile of each different sample. Curve width is the width of the concentration profile curve of the different samples in the chromatogram in units of time. A simplified method of calculating chromatogram resolution is to use the plate model. The plate model assumes that the column can be divided into a certain number of sections, or plates and the mass balance can be calculated for each individual plate. This approach approximates a typical chromatogram curve as a
Gaussian distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
curve. By doing this, the curve width is estimated as 4 times the standard deviation of the curve, 4σ. The retention time is the time from the start of signal detection to the time of the peak height of the Gaussian curve. From the variables in the figure above, the resolution, plate number, and plate height of the column plate model can be calculated using the equations: Resolution (Rs) Rs = 2(tRB – tRA)/(wB + wA)
Where: tRB = retention time of solute B
tRA = retention time of solute A
wB = Gaussian curve width of solute B
wA = Gaussian curve width of solute A
Plate Number (N):
N = (tR)2/(w/4)2
Plate Height (H):
H = L/N
Where L is the length of the column.


Column adsorption equilibrium

For an adsorption column, the column resin (the stationary phase) is composed of microbeads. Even smaller particles such as proteins, carbohydrates, metal ions, or other chemical compounds are conjugated onto the microbeads. Each binding particle that is attached to the microbead can be assumed to bind in a 1:1 ratio with the solute sample sent through the column that needs to be purified or separated. Binding between the target molecule to be separated and the binding molecule on the column beads can be modeled using a simple equilibrium reaction Keq = S( S]) where Keq is the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
, and are the concentrations of the target molecule and the binding molecule on the column resin, respectively. Sis the concentration of the complex of the target molecule bound to the column resin. Using this as a basis, three different isotherms can be used to describe the binding dynamics of a column chromatography: linear, Langmuir, and Freundlich. The linear isotherm occurs when the solute concentration needed to be purified is very small relative to the binding molecule. Thus, the equilibrium can be defined as: S= Keq For industrial scale uses, the total binding molecules on the column resin beads must be factored in because unoccupied sites must be taken into account. The
Langmuir isotherm The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressu ...
and Freundlich isotherm are useful in describing this equilibrium. Langmuir Isotherm:
S= (KeqStot /(1 + Keq , where Stot is the total binding molecules on the beads. Freundlich isotherm: S= Keq sup>1/n The Freundlich isotherm is used when the column can bind to many different samples in the solution that needs to be purified. Because the many different samples have different binding constants to the beads, there are many different Keqs. Therefore, the Langmuir isotherm is not a good model for binding in this case.


See also

*
High performance liquid chromatography High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to p ...
(HPLC) for column chromatography using high pressure. *
Fast protein liquid chromatography Fast protein liquid chromatography (FPLC), is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture ...
(FPLC) for separation of proteins using column chromatography.


References


External links


Flash Column Chromatography Guide
(pdf)

{{DEFAULTSORT:Column Chromatography Chromatography Laboratory techniques