Collision-induced dissociation
   HOME

TheInfoList



OR:

Collision-induced dissociation (CID), also known as collisionally activated dissociation (CAD), is a
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
technique to induce fragmentation of selected ions in the gas phase. The selected ions (typically molecular ions or protonated molecules) are usually accelerated by applying an electrical potential to increase the ion
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
and then allowed to collide with neutral molecules (often
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
,
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
or
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice a ...
). In the collision some of the kinetic energy is converted into
internal energy The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
which results in bond breakage and the fragmentation of the molecular ion into smaller fragments. These fragment ions can then be analyzed by tandem mass spectrometry. CID and the fragment ions produced by CID are used for several purposes. Partial or complete structural determination can be achieved. In some cases identity can be established based on previous knowledge without determining structure. Another use is in simply achieving more sensitive and specific detection. By detecting a unique fragment ion, the precursor ion can be detected in the presence of other ions of the same m/z value (mass-to-charge ratio), reducing the background and increasing the
limit of detection The limit of detection (LOD or LoD) is the lowest signal, or the lowest corresponding quantity to be determined (or extracted) from the signal, that can be observed with a sufficient degree of confidence or statistical significance. However, the ...
.


Low-energy CID and High-energy CID

Low-energy CID is typically carried out with ion kinetic energies less than approximately 1 kiloelectron volt (1 keV). Low-energy CID is highly efficient in fragmenting the selected precursor ions, but the type of fragment ions observed in low-energy CID is strongly dependent on the ion kinetic energy. Very low collision energies favor ion structure rearrangement, and the probability of direct bond cleavage increases as ion kinetic energy increases, leading to higher ion internal energies. High-energy CID (HECID) is carried out in magnetic sector mass spectrometers or tandem magnetic sector mass spectrometers and in tandem time-of-flight mass spectrometers (TOF/TOF). High-energy CID involves ion kinetic energies in the kilovolt range (typically 1 keV to 20 keV). High-energy CID can produce some types of fragment ions that are not formed in low-energy CID, such as charge-remote fragmentation in molecules with hydrocarbon substructures or sidechain fragmentation in peptides.


Triple quadrupole mass spectrometers

In a triple quadrupole mass spectrometer there are three quadrupoles. The first quadrupole termed "Q1" can act as a mass filter and transmits a selected ion and accelerates it towards "Q2" which is termed a collision cell. The pressure in Q2 is higher and the ions collides with neutral gas in the collision cell and is fragmented by CID. The fragments are then accelerated out of the collision cell and enter Q3 which scans through the mass range, analyzing the resulting fragments (as they hit a detector). This produces a mass spectrum of the CID fragments from which structural information or identity can be gained. Many other experiments using CID on a triple quadrupole exist such as precursor ion scans that determines where a specific fragment came from rather than what fragments are produced by a given molecule.


Fourier transform ion cyclotron resonance

Ions trapped in the ICR cell can be excited by applying pulsed electric fields at their resonant frequency to increase their kinetic energy. The duration and amplitude of the pulse determines the ion kinetic energy. Because a collision gas present at low pressure requires a long time for excited ions to collide with neutral molecules, a pulsed valve can be used to introduce a short burst of collision gas. Trapped fragment ions or their ion-molecule reaction products can be re-excited for multistage mass spectrometry (MSn). If the excitation is not applied on the resonant frequency, but at a slightly off-resonant frequency, the ions will alternately be excited and de-excited, permitting multiple collisions at low collision energy. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) is a CID technique used in Fourier transform ion cyclotron resonance
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
which involves accelerating the ions in cyclotron motion (in a circle inside of an ion trap) in the presence of a collision gas.


Higher-energy C-trap dissociation

Higher-energy C-trap dissociation (HCD) is a CID technique specific to the orbitrap mass spectrometer in which fragmentation takes place external to the trap. HCD was formerly known as higher-energy C-trap dissociation. In HCD, the ions pass through the C-trap and into the HCD cell, an added multipole collision cell, where dissociation takes place. The ions are then returned to the C-trap before injection into the orbitrap for mass analysis. HCD does not suffer from the low mass cutoff of resonant-excitation (CID) and therefore is useful for
isobaric tag Isobaric labeling is a mass spectrometry strategy used in quantitative proteomics. Peptides or proteins are labeled with chemical groups that have (at least nominally) identical mass (isobaric), but vary in terms of distribution of heavy isotope ...
–based quantification as reporter ions can be observed. Despite the name, the collision energy of HCD is typically in the regime of low energy collision induced dissociation (less than 100 eV).


Fragmentation mechanisms

Homolytic fragmentation is bond dissociation where each of the fragments retains one of the originally-bonded electrons. Heterolytic fragmentation is bond cleavage where the bonding electrons remain with only one of the fragment species. In CID, charge remote fragmentation is a type of
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...
breaking that occurs in a gas phase ion in which the cleaved bond is not adjacent to the location of the charge. This fragmentation can be observed using tandem mass spectrometry.


See also

* Electron-capture dissociation (ECD) * Electron-transfer dissociation (ETD) *
Infrared multiphoton dissociation Infrared multiple photon dissociation (IRMPD) is a technique used in mass spectrometry to fragment molecules in the gas phase usually for structural analysis of the original (parent) molecule. How it works An infrared laser is directed through ...
(IRMPD)


References

{{Mass spectrometry Tandem mass spectrometry Scientific techniques