Clathrates
   HOME

TheInfoList



OR:

A clathrate is a
chemical substance A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., w ...
consisting of a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
that traps or contains molecules. The word ''clathrate'' is derived from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
(), meaning ‘with bars,
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
d’. Most clathrate compounds are
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic and completely envelop the guest molecule, but in modern usage clathrates also include host–guest complexes and inclusion compounds.Atwood, J. L. (2012) "Inclusion Compounds" in ''Ullmann's Encyclopedia of Industrial Chemistry''. Wiley-VCH, Weinheim. According to
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
, clathrates are inclusion compounds "in which the guest molecule is in a cage formed by the host molecule or by a lattice of host molecules." The term refers to many molecular hosts, including
calixarene A calixarene is a macrocycle or cyclic oligomer based on a methylene-linked phenols. With hydrophobic cavities that can hold smaller molecules or ions, calixarenes belong to the class of cavitands known in host–guest chemistry. Nomenclature Cal ...
s and
cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical ...
s and even some inorganic polymers such as
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
s. Clathrates can be divided into two categories: clathrate hydrates and inorganic clathrates. Each clathrate is made up of a framework and guests that reside the framework. Most common clathrate crystal structures can be composed of cavities such as
dodecahedral In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, tetrakaidecahedral, and hexakaidecahedral cavities. Most clathrate hydrates are 85 mole % water. Clathrate hydrates are derived from organic hydrogen-bonded frameworks. These frameworks are prepared from molecules that "self-associate" by multiple hydrogen-bonding interactions. Small molecules or gases (i.e. methane, carbon dioxide, hydrogen) can be encaged as a guest in hydrates. The ideal guest/host ratio for clathrate hydrates range from 0.8 to 0.9. The guest interaction with the host is limited to van der Waals forces. Certain exceptions exist in ''semiclathrates'' where guests incorporate into the host structure via hydrogen bonding with the host structure. Hydrates form often with partial guest filling and collapse in the absence of guests occupying the water cages. Like ice, clathrate hydrates are stable at low temperatures and high pressure and possess similar properties like electrical resistivity. Clathrate hydrates are naturally occurring and can be found in the permafrost and oceanic sediments. Hydrates can also be synthesized through seed crystallization or using amorphous precursors for nucleation. Unlike hydrates, inorganic clathrates have a covalently bonded framework of inorganic atoms with guests typically consisting of alkali or
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are all ...
s. Due to the stronger covalent bonding, the cages are often smaller than hydrates. Guest atoms interact with the host by ionic or covalent bonds. Therefore, partial substitution of guest atoms follow Zintl rules so that the charge of the overall compound is conserved. Most inorganic clathrates have full occupancy of its framework cages by a guest atom to be in stable phase. Inorganic clathrates can be synthesized by direct reaction using ball milling at high temperatures or high pressures. Crystallization from melt in another common synthesis route. Due to the wide variety of composition of host and guest species, inorganic clathrates are much more chemically diverse and posses a wide range of properties. Most notably, inorganic clathrates can be found to be both an insulator and a superconductor (Ba8Si46). A common property of inorganic clathrates that has attracted researchers is low
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
. Low thermal conductivity is attributed to the ability of the guest atom to "rattle" within the host framework. The freedom of movement of the guest atoms scatters phonons that transport heat.


Examples

Clathrates have been explored for many applications including: gas storage, gas production, gas separation, desalination,
thermoelectrics Thermoelectric materials show the thermoelectric effect in a strong or convenient form. The ''thermoelectric effect'' refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a t ...
,
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
, and batteries. *Clathrate compounds with formula A8B16X30, where A is an alkaline earth metal, B is a Group III element, and X is an element from
Group IV The carbon group is a periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block. In modern IUPAC notation, it is called group 14. In the field of semicon ...
have been explored for thermoelectric devices. Thermoelectric materials follow a design strategy called the ''phonon glass electron crystal'' concept. Low thermal conductivity and high electrical conductivity is desired to produce the
Seebeck Effect The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
. When the guest and host framework are appropriately tuned, clathrates can exhibit low thermal conductivity (few W/mK), i.e., ''phonon glass'' behavior, while electrical conductivity through the host framework is undisturbed allowing clathrates to exhibit ''electron crystal''. * Methane clathrates feature the hydrogen-bonded framework contributed by water and the guest molecules of methane. Large amounts of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
naturally frozen in this form exist both in permafrost formations and under the ocean sea-bed. Other hydrogen-bonded networks are derived from
hydroquinone Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a ''para' ...
,
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
, and
thiourea Thiourea () is an organosulfur compound with the formula and the structure . It is structurally similar to urea (), except that the oxygen atom is replaced by a sulfur atom (as implied by the ''thio-'' prefix); however, the properties of urea a ...
. A much studied host molecule is Dianin's compound. * Hofmann clathrates are coordination polymers with the formula Ni(CN)4·Ni(NH3)2(arene). These materials crystallize with small aromatic guests (benzene, certain xylenes), and this selectivity has been exploited commercially for the separation of these hydrocarbons. Metal organic frameworks (MOFs) form clathrates.


History

Clathrate hydrates were discovered in 1810 by
Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for t ...
. Clathrates were studied by P. Pfeiffer in 1927 and in 1930, E. Hertel defined "molecular compounds" as substances decomposed into individual components following the mass action law in solution or gas state. Clathrate hydrates were discovered to form blockages in gas pipelines in 1934 by Hammerschmidt that led to increase in research to avoid hydrate formation. In 1945, H. M. Powell analyzed the crystal structure of these compounds and named them ''clathrates''. Gas production through methane hydrates has since been realized and has been tested for energy production in Japan and China.


Related materials

Inclusion compounds are often molecules, whereas . Intercalation compounds are not 3-dimensional, unlike clathrate compounds. Photolytically-sensitive caged compounds have been examined as containers for releasing a drug or reagent.
Zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
s are another type of crystalline structures that form a framework with cavities in which guest species can reside. Unlike clathrates, zeolites are defined by the tetrahedra linking of four oxygen atoms surrounding a cation. The guests are also not required to fill the open cavities. Zeolite structures are defined by the diverse building units of the framework, as opposed to cavity structures in clathrates. Similar applications have been explored. Silica clathrasil are compounds structurally similar to clathrate hydrates with a SiO2 framework and can be found in a range of marine sediment.


See also

*
Molecular tweezers Molecular tweezers, and molecular clips, are host molecules with open cavities capable of binding guest molecules. The open cavity of the molecular tweezers may bind guests using non-covalent bonding which includes hydrogen bonding, metal coor ...
* Clathrate hydrate


References

{{Authority control