HOME
        TheInfoList






Astronomy in China has history. There is no information on Chinese history and astronomy. Though, Ancient china used stars beginning from the Shang Dynasty (Chinese Bronze Age). Chinese star names later categorized in the twenty-eight mansions have been found on oracle bones unearthed at Anyang, dating back to the middle Shang Dynasty, and the mansion (xiù:宿) system's nucleus seems to have taken shape by the time of the ruler Wu Ding (1339–1281 BCE).[1]

Detailed records of astronomical observations began during the Warring States period (fourth century BCE) and flourished from the Han period onward. Chinese astronomy was equatorial, centered as it was on close observation of circumpolar stars, and was based on different principles from those prevailing in traditional Western astronomy, where heliacal risings and settings of zodiac constellations formed the basic ecliptic framework.[2] Needham has described the ancient Chinese as the most persistent and accurate observers of celestial phenomena anywhere in the world before the Islamic astronomers.[3]

Some elements of Indian astronomy reached China with the expansion of Buddhism after the Eastern Han Dynasty (25–220 CE), but the most detailed incorporation of Indian astronomical thought occurred during the Tang Dynasty (618–907 CE), when numerous Indian astronomers took up residence in the Chinese capital, and Chinese scholars, such as the Tantric Buddhist monk and mathematician Yi Xing, mastered its system. Islamic astronomers collaborated closely with their Chinese colleagues during the Yuan Dynasty, and, after a period of relative decline during the Ming Dynasty, astronomy was revitalized under the stimulus of Western cosmology and technology after the Jesuits established their missions. The telescope was introduced in the seventeenth century. In 1669, the Peking observatory was completely redesigned and refitted under the direction of Ferdinand Verbiest. Today, China continues to be active in astronomy, with many observatories and its own space program.

The earliest development of the armillary sphere in China goes back to the 1st century BCE,[18] as they were equipped with a primitive single-ring armillary instrument. This would have allowed them to measure the north polar distance (去極度, the Chinese form of declination) and measurement that gave the position in a hsiu (入宿度, the Chinese form of right ascension).[19]

During the Western Han Dynasty (202 BC-9 CE), additional developments made by the astronomers Luo Xiahong (落下閎), Xiangyu Wangren, and Geng Shouchang (耿壽昌) advanced the use of the armillary in its early stage of evolution. In 52 BCE, it was the astronomer Geng Shou-chang who introduced the fixed equatorial ring to the armillary sphere.[19] In the subsequent Eastern Han Dynasty (23–220  CE) period, the astronomers Fu An and Jia Kui added the elliptical ring by 84 CE.[19] With the famous statesman, astronomer, and inventor Zhang Heng (78–139 CE), the sphere was totally completed in 125 CE, with horizon and meridian rings

During the Western Han Dynasty (202 BC-9 CE), additional developments made by the astronomers Luo Xiahong (落下閎), Xiangyu Wangren, and Geng Shouchang (耿壽昌) advanced the use of the armillary in its early stage of evolution. In 52 BCE, it was the astronomer Geng Shou-chang who introduced the fixed equatorial ring to the armillary sphere.[19] In the subsequent Eastern Han Dynasty (23–220  CE) period, the astronomers Fu An and Jia Kui added the elliptical ring by 84 CE.[19] With the famous statesman, astronomer, and inventor Zhang Heng (78–139 CE), the sphere was totally completed in 125 CE, with horizon and meridian rings.[19] It is of great importance to note that the world's first hydraulic (i.e., water-powered) armillary sphere was created by Zhang Heng, who operated his by use of an inflow clepsydra clock (see Zhang's article for more detail).

Designed by famous astronomer Guo Shoujing in 1276 AD, it solved most problems found in armillary spheres at that time.

The primary structure of abridged armilla contains two large rings that are perpendicular to each other, of which one is parallel with the equatorial plane and is accordingly called "equatorial ring", and the other is a double ring that is perpendicular to the center of the equatorial ring, revolving around a metallic shaft, and is called "right ascension double ring".

The double ring holds within itself a

The primary structure of abridged armilla contains two large rings that are perpendicular to each other, of which one is parallel with the equatorial plane and is accordingly called "equatorial ring", and the other is a double ring that is perpendicular to the center of the equatorial ring, revolving around a metallic shaft, and is called "right ascension double ring".

The double ring holds within itself a sighting tube with crosshairs. When observing, astronomers would aim at the star with the sighting tube, whereupon the star's position could be deciphered by observing the dials of the equatorial ring and the right ascension double ring.

A foreign missionary melted the instrument in 1715 CE. The surviving one was built in 1437 CE and was taken to what is now Germany. It was then stored in a French Embassy in 1900, during the Eight-Nation Alliance. Under the pressure of international public discontent, Germany returned the instrument to China. In 1933, it was placed in Purple Mountain Observatory, which prevented it from being destroyed in the Japanese invasion of China. In the 1980s, it had become seriously eroded and rusted down and was nearly destroyed. In order to restore the device, the Nanjing government spent 11 months to repair it.

Besides star maps, the Chinese also made celestial globes, which show stars' positions like a star map and can present the sky at a specific time. Because of its Chinese name, it is often confused with the armillary sphere, which is just one word different in Chinese (渾象 vs. 渾儀).

According to records, the first celestial globe was made by Geng Shou-chang (耿壽昌) between 70 BC and 50 BCE. In the Ming Dynasty, the celestial globe at that time was a huge globe, showing the 28 mansions, celestial equator and ecliptic. None of them have survived.

Celestial globe (天體儀) in the Qing Dynasty

Celestial globes were named 天體儀 ("Miriam celestial bodies") in the Qing Dynasty. The one in Beijing Ancient Observatory was made by Belgian missionary Ferdinand Verbiest (南懷仁) in 1673 CE. Unlike other Chinese celestial globes, it employs 360 Ming Dynasty, the celestial globe at that time was a huge globe, showing the 28 mansions, celestial equator and ecliptic. None of them have survived.

Celestial globes were named 天體儀 ("Miriam celestial bodies") in the Qing Dynasty. The one in Beijing Ancient Observatory was made by Belgian missionary Ferdinand Verbiest (南懷仁) in 1673 CE. Unlike other Chinese celestial globes, it employs 360 degrees rather than the 365.24 degrees (which is a standard in ancient China). It is also the first Chinese globe that shows constellations near to the Celestial South Pole.

The water-powered armillary sphere and celestial globe tower (水運儀象台)

Three Kingdoms era (220–265 CE). However, the most detailed incorporation of Indian astronomy occurred only during the Tang Dynasty (618–907), when a number of Chinese scholars—such as Yi Xing—were versed in both astronomy. A system of Indian astronomy was recorded in China as Jiuzhi-li (718 CE), the author of which was an Indian by the name of Qutan Xida.[20]

The astronomical table of sines by the Indian astronomer and mathematician Aryabhata was translated into the Chinese astronomical and mathematical book Treatise on Astrology of the Kaiyuan Era (Kaiyuan Zhanjing), compiled in 718 CE during the sines by the Indian astronomer and mathematician Aryabhata was translated into the Chinese astronomical and mathematical book Treatise on Astrology of the Kaiyuan Era (Kaiyuan Zhanjing), compiled in 718 CE during the Tang Dynasty.[10] The Kaiyuan Zhanjing was compiled by Gautama Siddha, an astronomer and astrologer born in Chang'an, and whose family was originally from India. He was also notable for his translation of the Navagraha calendar into Chinese.

The Chinese translations of the following works are mentioned in the Sui Shu, or Official History of the Sui Dynasty (seventh century):

Brahman.a Chieh-Chhieh Hsienjen) in 30 books.

  • Po-lo-men Thien Ching (Brahminical Heavenly Theory) in one book.
  • Mo-teng-Chia Ching Huang-thu (Map of Heaven and Earth in the Matangi Sutra) in one

book.

  • Po-lo-men Suan Ching (Brahminical Arithmetical Classic) in three books.
  • Po-lo-men Suan Fa (Brahminical Arithmetical Rules) in one book.
  • Po-lo-men Yin

    Although these translations are lost, they were also mentioned in other sources.[21]

    Islamic astronomy in East Asia

    When transitioning

    When transitioning into the Ming Dynasty, the two largest institutions of astronomy were the Traditional Chinese Astronomical Bureau (also named T’ai-shih-chien),[38] which had been established in the third century BC, and the Muslim Astronomical Bureau (also named Hui-hui ssu-t’ien-chien),[39] which had been previously established by the Mongols. Both sectors worked together, until the Muslim Bureau was absorbed in 1370 by the Traditional Chinese Bureau.[39] When the merge occurred, the overall name of the new bureau became Ch’in-t’ien-chien.[39] To accommodate the influx of new workers, the ranking system within the occupation also transitioned. There became one Director, supported by two Deputy Directors, followed by a Registrar with four seasonal Chiefs. Then came eight Chief Astronomers, five Chief Diviners, two Chiefs of the Clepsydras, and three Observers. Following that was two Calendar Officials, eight Observers of Sunrise, and six Professors of the Clepsydra.[40]

    Responsibilities of the Bureau

    Bec

    Because becoming an astronomer was a hereditary profession and those that are employed by the Bureau are not transferable to other occupations, students were trained very young by the Ministry of Rites.[42] However, when there was a shortage of workers in the Bureau, the Ministry of Rites would scout suitable students and train them on a trial basis.[42] Calendrical recordings greatly attracted Confucian scholars, which widened interest into this subject, and thus into astronomy and divination. Confucian student's deep need for knowledge and practicality made these tasks appeal to academics.[44] Astronomy was attractive because it blended the physical world with larger implications. However, Astronomy was considered part of the "small dao", a title used to attempt to discourage Confucian Scholars from studying subjects that while interesting at first, could eventually bog them down.[45]

    Payment

    Within the Bureau, payment was decided upon by rank. As established in the year 1392, the top rank of Directors is paid sixteen piculs of rice per month. The Deputy Directors and Chiefs of the Five Agencies are allotted ten piculs per month, the Astronomers receive seven piculs, while both the Registrars and Chief Diviners have six and a half piculs. The Chiefs of the Clepsydras receive six piculs, and the Calendar Officers and Observers both have five and a half piculs. The lowest payment level goes to the Observers of the Sunrise and the Professors of the Clepsydras at five piculs per month.[41]

    Instruments Used by the Occupation

    The imperial observatory was a platform where the observations were made. It was first located just south of Nanjing, but late moved to Jiming Mountain city. However, in 1402 there was another platform created in the capital of Beijing.[47]

    [47]

    Armillary Sphere (Ming China)

    The simplified instrument serves a very similar purpose to th

    The simplified instrument serves a very similar purpose to the armillary sphere but has fewer parts. With only two sets of coordinates, this instrument has a larger range and vision than the armillary spheres.[48]

    Yuan Gnomon

    The Yuan Gnomon is a shadow casting ins

    The Yuan Gnomon is a shadow casting instrument used to measure the position of the sun. However, it does not appear to be very accurate. A crucial aspect of this mechanism was that it was oriented along the north–south meridian line, which allowed it to show the local noon. While not included in the 1392 list of official instruments, in 1437 Huangfu Zhonghe included it, likely due less to its practicality and more to the ingenuity behind it.[49]

    Clepsydra

    The

    The clepsydra, or water clock, was the most prevalent of time-keeping devices for astronomers. The clepsydra was also used as the official state time-keeping device. The Astronomical Bureau used a three chamber intake clepsydra, although there is no record of a water clock at Nanjing. It was not until the Bureau moved to Beijing that an official water hall was observed.[50]

    Outside Perspective