Chemical Revolution
   HOME

TheInfoList



OR:

The chemical revolution, also called the ''first chemical revolution'', was the early modern reformulation of
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
that culminated in the
law of conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
and the
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
theory of
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
. During the 19th and 20th century, this transformation was credited to the work of the French chemist
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
father of modern chemistry"). However, recent work on the history of early modern chemistry considers the chemical revolution to consist of gradual changes in chemical theory and practice that emerged over a period of two centuries. The so-called
scientific revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transforme ...
took place during the sixteenth and seventeenth centuries whereas the chemical revolution took place during the seventeenth and eighteenth centuries.


Primary factors

Several factors led to the first chemical revolution. First, there were the forms of gravimetric analysis that emerged from alchemy and new kinds of instruments that were developed in medical and industrial contexts. In these settings, chemists increasingly challenged hypotheses that had already been presented by the ancient Greeks. For example, chemists began to assert that all structures were composed of more than the
four elements Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simi ...
of the Greeks or the eight elements of the medieval alchemists. The Irish
alchemist Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscientific tradition that was historically practiced in China, India, the Muslim ...
,
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders ...
, laid the foundations for the Chemical Revolution, with his
mechanical Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations ...
corpuscular philosophy, which in turn relied heavily on the alchemical
corpuscular theory In optics, the corpuscular theory of light states that light is made up of small discrete particles called " corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate ...
and
experimental method An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when ...
dating back to
pseudo-Geber Pseudo-Geber (or "Latin pseudo-Geber") is the presumed author or group of authors responsible for a corpus of pseudepigraphic alchemical writings dating to the late 13th and early 14th centuries. These writings were falsely attributed to Jabir ...
. Earlier works by chemists such as
Jan Baptist van Helmont Jan Baptist van Helmont (; ; 12 January 1580 – 30 December 1644) was a chemist, physiologist, and physician from Brussels. He worked during the years just after Paracelsus and the rise of iatrochemistry, and is sometimes considered to b ...
helped to shift the belief in theory that air existed as a single element to that of one in which air existed as a composition of a mixture of distinct kinds of gasses. Van Helmont's data analysis also suggests that he had a general understanding of the law of conservation of mass in the 17th century. Furthermore, work by Jean Rey in the early 17th century with metals like tin and lead and their oxidation in the presence of air and water helped pinpoint the contribution and existence of oxygen in the oxidation process. Other factors included new experimental techniques and the discovery of 'fixed air' (carbon dioxide) by Joseph Black in the middle of the 18th century. This discovery was particularly important because it empirically proved that 'air' did not consist of only one substance and because it established 'gas' as an important experimental substance. Nearer the end of the 18th century, the
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
s by
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
and
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, natural philosopher, separatist theologian, grammarian, multi-subject educator, and liberal political theorist. He published over 150 works, and conducted ...
further proved that air is not an element and is instead composed of several different gases. Lavoisier also translated the names of chemical substance into a new nomenclatural language more appealing to scientists of the nineteenth century. Such changes took place in an atmosphere in which the
industrial revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
increased public interest in learning and practicing chemistry. When describing the task of reinventing chemical nomenclature, Lavoisier attempted to harness the new centrality of chemistry by making the rather hyperbolic claim that:


Precision instruments

Much of the reasoning behind Antoine Lavoisier being named the "father of modern chemistry" and the start of the chemical revolution lay in his ability to mathematize the field, pushing chemistry to use the experimental methods utilized in other "more exact sciences." Lavoisier changed the field of chemistry by keeping meticulous balance sheets in his research, attempting to show that through the transformation of chemical species the total amount of substance was conserved. Lavoisier used instrumentation for thermometric and barometric measurements in his experiments, and collaborated with
Pierre Simon de Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized ...
in the invention of the calorimeter, an instrument for measuring heat changes in a reaction. In attempting to dismantle phlogiston theory and implement his own theory of combustion, Lavoisier utilized multiple apparatuses. These included a red-hot iron gun barrel which was designed to have water run through it and decompose, and an alteration of the apparatus which implemented a pneumatic trough at one end, a thermometer, and a barometer. The precision of his measurements was a requirement in convincing opposition of his theories about water as a compound, with instrumentation designed by himself implemented in his research. Despite having precise measurements for his work, Lavoisier faced a large amount of opposition in his research. Proponents of phlogiston theory, such as Keir and Priestley, claimed that demonstration of facts was only applicable for raw phenomena, and that interpretation of these facts did not imply accuracy in theories. They stated that Lavoisier was attempting to impose order on observed phenomena, whereas a secondary source of validity would be required to give definitive proof of the composition of water and non-existence of phlogiston.


Antoine Lavoisier

The latter stages of the revolution was fuelled by the 1789 publication of Lavoisier's ''
Traité Élémentaire de Chimie ''Traité élémentaire de chimie'' (''Elementary Treatise on Chemistry'') is a textbook written by Antoine Lavoisier published in 1789 and translated into English by Robert Kerr in 1790 under the title ''Elements of Chemistry in a New Systemati ...
'' (Elements of Chemistry). Beginning with this publication and others to follow, Lavoisier synthesised the work of others and coined the term "oxygen". Antoine Lavoisier represented the chemical revolution not only in his publications, but also in the way he practiced chemistry. Lavoisier's work was characterized by his systematic determination of weights and his strong emphasis on precision and accuracy. While it has been postulated that the law of conservation of mass was discovered by Lavoisier, this claim has been refuted by scientist Marcellin Berthelot. Earlier use of the law of conservation of mass has been suggested by Henry Guerlac, noting that scientist
Jan Baptist van Helmont Jan Baptist van Helmont (; ; 12 January 1580 – 30 December 1644) was a chemist, physiologist, and physician from Brussels. He worked during the years just after Paracelsus and the rise of iatrochemistry, and is sometimes considered to b ...
had implicitly applied the methodology to his work in the 16th and 17th centuries. Earlier references of the law of conservation of mass and its use were made by Jean Rey in 1630. Although the law of conservation of mass was not explicitly discovered by Lavoisier, his work with a wider array of materials than what most scientists had available at the time allowed his work to greatly expand the boundaries of the principle and its fundamentals. Lavoisier also contributed to chemistry a method of understanding combustion and respiration and proof of the composition of water by decomposition into its constituent parts. He explained the theory of combustion, and challenged the
phlogiston theory The phlogiston theory is a superseded scientific theory that postulated the existence of a fire-like element called phlogiston () contained within combustible bodies and released during combustion. The name comes from the Ancient Greek (''bur ...
with his views on caloric. The ''Traité'' incorporates notions of a "new chemistry" and describes the experiments and reasoning that led to his conclusions. Like Newton's '' Principia'', which was the high point of the Scientific Revolution, Lavoisier's ''Traité'' can be seen as the culmination of the Chemical Revolution. Lavoisier's work was not immediately accepted and it took several decades for it gain momentum. This transition was aided by the work of Jöns Jakob Berzelius, who came up with a simplified shorthand to describe chemical compounds based on
John Dalton John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He is best known for introducing the atomic theory into chemistry, and for his research into Color blindness, colour blindness, which ...
's theory of atomic weights. Many people credit Lavoisier and his overthrow of
phlogiston theory The phlogiston theory is a superseded scientific theory that postulated the existence of a fire-like element called phlogiston () contained within combustible bodies and released during combustion. The name comes from the Ancient Greek (''bur ...
as the traditional chemical revolution, with Lavoisier marking the beginning of the revolution and John Dalton marking its culmination.


Méthode de nomenclature chimique

Antoine Lavoisier, in a collaborative effort with Louis Bernard Guyton de Morveau, Claude Louis Berthollet, and Antoine François de Fourcroy, published ''Méthode de nomenclature chimique'' in 1787. This work established a terminology for the "new chemistry" which Lavoisier was creating, which focused on a standardized set of terms, establishment of new elements, and experimental work. ''Méthode'' established 55 elements which were substances that could not be broken down into simpler composite parts at the time of publishing. By introducing new terminology into the field, Lavoisier encouraged other chemists to adopt his theories and practices in order to use his terms and stay current in chemistry.


Traité élémentaire de chimie

One of Lavoisier's main influences was Étienne Bonnet, abbé de Condillac. Condillac's approach to scientific research, which was the basis of Lavoisier's approach in ''Traité'', was to demonstrate that human beings could create a mental representation of the world using gathered evidence. In Lavoisier's preface to ''Traité'', he states
It is a maxim universally admitted in geometry, and indeed in every branch of knowledge, that, in the progress of investigation, we should proceed from known facts to what is unknown. ... In this manner, from a series of sensations, observations, and analyses, a successive train of ideas arises, so linked together, that an attentive observer may trace back to a certain point the order and connection of the whole sum of human knowledge.
Lavoisier clearly ties his ideas in with those of Condillac, seeking to reform the field of chemistry. His goal in ''Traité'' was to associate the field with direct experience and observation, rather than assumption. His work defined a new foundation for the basis of chemical ideas and set a direction for the future course of chemistry.


Humphry Davy

Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for ...
was an English chemist and a professor of chemistry at the London's Royal Institution in the early 1800s. There he performed experiments that cast doubt upon some of Lavoisier's key ideas such as the acidity of oxygen and the idea of a caloric element. Davy was able to show that acidity was not due to the presence of oxygen using muriatic acid (hydrochloric acid) as proof. He also proved that the compound oxymuriatic acid contained no oxygen and was instead an element, which he named
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
. Through his use of electric batteries at the Royal Institution Davy first isolated chlorine, followed by the isolation of elemental
iodine Iodine is a chemical element with the Symbol (chemistry), symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , ...
in 1813. Using the batteries Davy was also able to isolate the elements
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
. From these experiments Davy concluded that the forces that join chemical elements together must be electrical in nature. Davy was also a proponent against the idea that caloric was an immaterial fluid, arguing instead that heat was a type of motion.


John Dalton

John Dalton John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He is best known for introducing the atomic theory into chemistry, and for his research into Color blindness, colour blindness, which ...
was an English chemist who developed the idea of
atomic theory Atomic theory is the scientific theory that matter is composed of particles called atoms. Atomic theory traces its origins to an ancient philosophical tradition known as atomism. According to this idea, if one were to take a lump of matter ...
of chemical elements. Dalton's atomic theory of chemical elements assumed that each element had unique atoms associated with and specific to that atom. This was in opposition to Lavoisier's definition of elements which was that elements are substances that chemists could not break down further into simpler parts. Dalton's idea also differed from the idea of corpuscular theory of matter, which believed that all atoms were the same, and had been a supported theory since the 17th century. To help support his idea, Dalton worked on defining the relative weights of atoms in chemicals in his work ''New System of Chemical Philosophy,'' published in 1808. His text showed calculations to determine the relative atomic weights of Lavoisier's different elements based on experimental data pertaining to the relative amounts of different elements in chemical combinations. Dalton argued that elements would combine in the simplest form possible. Water was known to be a combination of hydrogen and oxygen, thus Dalton believed water to be a binary compound containing one hydrogen and one oxygen. Dalton was able to accurately compute the relative quantity of gases in atmospheric air. He used the specific gravity of azotic (nitrogen), oxygenous, carbonic acid (carbon dioxide), and hydrogenous gases as well as aqueous vapor determined by Lavoisier and Davy to determine the proportional weights of each as a percent of a whole volume of atmospheric air. Dalton determined that atmospheric air contains 75.55% azotic gas, 23.32% oxygenous gas, 1.03% aqueous vapor, and 0.10% carbonic acid gas.


Jöns Jacob Berzelius

Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; by himself and his contemporaries named only Jacob Berzelius, 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be o ...
was a Swedish chemist who studied medicine at the University of Uppsala and was a professor of chemistry in Stockholm. He drew on the ideas of both Davy and Dalton to create an electrochemical view of how elements combined together. Berzelius classified elements into two groups, electronegative and electropositive depending which pole of a galvanic battery they were released from when decomposed. He created a scale of charge with oxygen being the most electronegative element and potassium the most electropositive. This scale signified that some elements had positive and negative charges associated with them and the position of an element on this scale and the element's charge determined how that element combined with others. Berzelius's work on electrochemical atomic theory was published in 1818 as ''Essai sur la théorie des proportions chimiques et sur l'influence chimique de l'électricité''. He also introduced a new
chemical nomenclature A chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC). Th ...
into chemistry by representing elements with letters and abbreviations, such as O for oxygen and Fe for iron. Combinations of elements were represented as sequences of these symbols and the number of atoms were represented at first by superscripts and then later subscripts.


References


Further reading

* William B. Jensen,
Logic, History, and the Chemistry Textbook: III. One Chemical Revolution or Three?
, '' Journal of Chemical Education'', Vol. 75, No. 8, August 1998 * {{cite book, author=John G. McEvoy, title=Historiography of the Chemical Revolution: Patterns of Interpretation in the History of Science, year=2010, publisher=Pickering & Chatto, isbn=978-1-84893-030-8 See als
book review
by Seymour Mauskopf in ''HYLE--International Journal for Philosophy of Chemistry'', Vol. 17, No.1 (2011), pp. 41–46.


External links


Chemistry :: The chemical revolution
– Encyclopædia Britannica

– University of Valencia History of chemistry Revolutions by type sv:Kemins historia#Kemiska revolutionen