HOME
        TheInfoList






The carrying capacity of an environment is the maximum population size of a biological species that can be sustained in that specific environment, given the food, habitat, water, and other resources available. In population ecology, carrying capacity is defined as the environment's maximal load, which is different from the concept of population equilibrium, which may be far below an environment's carrying capacity.[1] The effect of carrying capacity on population dynamics may be modelled with a logistic function.

The specific reason why a population stops growing is known as a limiting or regulating factor.[citation needed]

Reaching carrying capacity through a logistic growth curve

The difference between the birth rate and the death rate is the "natural increase". If the population of a given organism is below the carrying capacity of a given environment, this environment could support a positive natural increase; should it find itself above that threshold the population typically decrease. Thus, the carrying capacity is the maximum number of individuals of a species that an environment can support.[citation needed]

Population size decreases above carrying capacity due to a range of factors depending on the species concerned, but can include insufficient space, food supply, or sunlight. The carrying capacity of an environment may vary for different species.[citation needed]

Carrying capacity was originally used to determine the number of animals that could graze on a segment of land. The idea has recently been applied to humans in the context of environmentalism.[2] For the human population variables such as sanitation and medical care are sometimes considered as part of the environment.[citation needed]

Origins

In terms of population dynamics, the concept of carrying capacity was not explicitly used in 1838 by the Belgian mathematician Pierre François Verhulst when he first published his equations based on research on modelling population growth,[3] but was popularised in the 1920 by the American biostatisticians Raymond Pearl and Lowell Reed.[limiting or regulating factor.[citation needed]

The difference between the birth rate and the death rate is the "natural increase". If the population of a given organism is below the carrying capacity of a given environment, this environment could support a positive natural increase; should it find itself above that threshold the population typically decrease. Thus, the carrying capacity is the maximum number of individuals of a species that an environment can support.[citation needed]

Population size decreases above carrying capacity due to a range of factors depending on the species concerned, but can include insufficient space, food supply, or sunlight. The carrying capacity of an environment may vary for different species.[citation needed]

Population size decreases above carrying capacity due to a range of factors depending on the species concerned, but can include insufficient space, food supply, or sunlight. The carrying capacity of an environment may vary for different species.[citation needed]

Carrying capacity was originally used to determine the number of animals that could graze on a segment of land. The idea has recently been applied to humans in the context of environmentalism.[2] For the human population variables such as sanitation and medical care are sometimes considered as part of the environment.[citation needed]

In terms of population dynamics, the concept of carrying capacity was not explicitly used in 1838 by the Belgian mathematician Pierre François Verhulst when he first published his equations based on research on modelling population growth,[3] but was popularised in the 1920 by the American biostatisticians Raymond Pearl and Lowell Reed.[citation needed]

The origins of the English term "carrying capacity" are uncertain, with researchers variously stating that it was used "in the context of international shipping"[4] or that it was first used during 19th-century laboratory experiments with micro-organisms.[5] A recent review finds the first use of the term in an 1845 report by the US Secretary of State to the US Senate.[4]

Factors

In the standard ecological algebra as illustrated in the simplified Verhulst model of shipping"[4] or that it was first used during 19th-century laboratory experiments with micro-organisms.[5] A recent review finds the first use of the term in an 1845 report by the US Secretary of State to the US Senate.[4]

In the standard ecological algebra as illustrated in the simplified Verhulst model of population dynamics, carrying capacity is represented by the constant K: