HOME
The Info List - Capsaicin





Capsaicin
Capsaicin
(/kæpˈseɪ.ɪsɪn/ (INN); 8-methyl-N-vanillyl-6-nonenamide) is an active component of chili peppers, which are plants belonging to the genus Capsicum. It is an irritant for mammals, including humans, and produces a sensation of burning in any tissue with which it comes into contact. Capsaicin
Capsaicin
and several related compounds are called capsaicinoids and are produced as secondary metabolites by chili peppers, probably as deterrents against certain mammals and fungi.[3] Pure capsaicin is a hydrophobic, colorless, highly pungent,[2] crystalline to waxy compound.

Contents

1 History 2 Capsaicinoids 3 Biosynthesis

3.1 History 3.2 Biosynthetic pathway

4 Natural function 5 Uses

5.1 Food 5.2 Research and pharmaceutical use 5.3 Pepper spray
Pepper spray
and pests 5.4 Equestrian sports

6 Mechanism of action 7 Toxicity

7.1 Acute health effects 7.2 Treatment after exposure 7.3 Effects on weight loss and regain

8 See also 9 References

9.1 Footnotes

10 Further reading 11 External links

History[edit] The compound was first extracted in impure form in 1816 by Christian Friedrich Bucholz (1770–1818).[4] He called it "capsicin", after the genus Capsicum
Capsicum
from which it was extracted. John Clough Thresh (1850–1932), who had isolated capsaicin in almost pure form,[5][6] gave it the name "capsaicin" in 1876.[7] Karl Micko isolated capsaicin in its pure form in 1898.[8][9] Capsaicin's chemical composition was first determined by E. K. Nelson in 1919, who also partially elucidated capsaicin's chemical structure.[10] Capsaicin
Capsaicin
was first synthesized in 1930 by Ernst Spath and Stephen F. Darling.[11] In 1961, similar substances were isolated from chili peppers by the Japanese chemists S. Kosuge and Y. Inagaki, who named them capsaicinoids.[12][13] In 1873 German pharmacologist Rudolf Buchheim[14] (1820–1879) and in 1878 the Hungarian doctor Endre Hőgyes[15] stated that "capsicol" (partially purified capsaicin[16]) caused the burning feeling when in contact with mucous membranes and increased secretion of gastric acid. Capsaicinoids[edit] The most commonly occurring capsaicinoids are capsaicin (69%), dihydrocapsaicin (22%), nordihydrocapsaicin (7%), homocapsaicin (1%), and homodihydrocapsaicin (1%) [17] Besides the five natural capsaicinoids (table below), one synthetic member of the capsaicinoid family exists: vanillylamide of n-nonanoic acid (VNA, also PAVA) used as a reference substance for determining the relative pungency of capsaicinoids.[citation needed]

Capsaicinoid name Abbrev. Typical relative amount Scoville heat units Chemical structure

Capsaicin C 69% 16,000,000

Dihydrocapsaicin DHC 22% 15,000,000

Nordihydrocapsaicin NDHC 7% 9,100,000

Homodihydrocapsaicin HDHC 1% 8,600,000

Homocapsaicin HC 1% 8,600,000

Nonivamide PAVA

9,200,000

Biosynthesis[edit] History[edit] The general biosynthetic pathway of capsaicin and other capsaicinoids was elucidated in the 1960s by Bennett and Kirby, and Leete and Louden. Radiolabeling studies identified phenylalanine and valine as the precursors to capsaicin.[18][19] Enzymes of the phenylpropanoid pathway, phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), caffeic acid O-methyltransferase (COMT) and their function in capsaicinoid biosynthesis were identified later by Fujiwake et al.,[20][21] and Sukrasno and Yeoman.[22] Suzuki et al. are responsible for identifying leucine as another precursor to the branched-chain fatty acid pathway.[23] It was discovered in 1999 that pungency of chili peppers is related to higher transcription levels of key enzymes of the phenylpropanoid pathway, phenylalanine ammonia lyase, cinnamate 4-hydroxylase, caffeic acid O-methyltransferase. Similar studies showed high transcription levels in the placenta of chili peppers with high pungency of genes responsible for branched-chain fatty acid pathway.[24] Biosynthetic pathway[edit] Plants exclusively of the Capsicum
Capsicum
genus produce capsaicinoids, which are alkaloids.[25] Capsaicin
Capsaicin
is believed to be synthesized in the interlocular septum of chili peppers and depends on the gene AT3, which resides at the pun1 locus, and which encodes a putative acyltransferase.[26] Biosynthesis of the capsaicinoids occurs in the glands of the pepper fruit where capsaicin synthase condenses vanillylamine from the phenylpropanoid pathway with an acyl-CoA moiety produced by the branched-chain fatty acid pathway.[27][28][29][30] Capsaicin
Capsaicin
is the most abundant capsaicinoid found in the Capsicum genus, but at least ten other capsaicinoid variants exist.[31] Phenylalanine supplies the precursor to the phenylpropanoid pathway while leucine or valine provide the precursor for the branched-chain fatty acid pathway.[27][28] To produce capsaicin, 8-methyl-6-nonenoyl-CoA is produced by the branched-chain fatty acid pathway and condensed with vanillamine. Other capsaicinoids are produced by the condensation of vanillamine with various acyl-CoA products from the branched-chain fatty acid pathway, which is capable of producing a variety of acyl-CoA moieties of different chain length and degrees of unsaturation.[32] All condensation reactions between the products of the phenylpropanoid and branched-chain fatty acid pathway are mediated by capsaicin synthase to produce the final capsacinoid product.[27][28]

Vanillamine is a product of the phenylpropanoid pathway

Valine enters the branched fatty acid pathway to produce 8-methyl-6-nonenoyl-CoA

Capsaicin
Capsaicin
synthase condenses vanillamine and 8-methy-6-nonenoyl CoA to produce capsaicin

Natural function[edit] Capsaicin
Capsaicin
is present in large quantities in the placental tissue (which holds the seeds), the internal membranes and, to a lesser extent, the other fleshy parts of the fruits of plants in the genus Capsicum. The seeds themselves do not produce any capsaicin, although the highest concentration of capsaicin can be found in the white pith of the inner wall, where the seeds are attached.[33] The seeds of Capsicum
Capsicum
plants are dispersed predominantly by birds: in birds, the TRPV1
TRPV1
channel does not respond to capsaicin or related chemicals (avian vs. mammalian TRPV1
TRPV1
show functional diversity and selective sensitivity). This is advantageous to the plant, as chili pepper seeds consumed by birds pass through the digestive tract and can germinate later, whereas mammals have molar teeth which destroy such seeds and prevent them from germinating. Thus, natural selection may have led to increasing capsaicin production because it makes the plant less likely to be eaten by animals that do not help it disperse.[34] There is also evidence that capsaicin may have evolved as an anti-fungal agent:[35] the fungal pathogen Fusarium, which is known to infect wild chilies and thereby reduce seed viability, is deterred by capsaicin, which thus limits this form of predispersal seed mortality. In 2006, it was discovered that the venom of a certain tarantula species activates the same pathway of pain as is activated by capsaicin; this was the first demonstrated case of such a shared pathway in both plant and animal anti-mammal defense.[36] Uses[edit] Food[edit]

Curry
Curry
dishes

Because of the burning sensation caused by capsaicin when it comes in contact with mucous membranes, it is commonly used in food products to provide added spice or "heat" (piquancy), usually in the form of spices such as chili powder and paprika.[37] In high concentrations, capsaicin will also cause a burning effect on other sensitive areas, such as skin or eyes.[38] The degree of heat found within a food is often measured on the Scoville scale.[37] Because people enjoy the heat,[37] there has long been a demand for capsaicin-spiced products like curry, chili con carne, and hot sauces such as Tabasco sauce
Tabasco sauce
and salsa.[37] It is common for people to experience pleasurable and even euphoric effects from ingesting capsaicin.[37] Folklore among self-described "chiliheads" attributes this to pain-stimulated release of endorphins, a different mechanism from the local receptor overload that makes capsaicin effective as a topical analgesic.[38] Research and pharmaceutical use[edit] Capsaicin
Capsaicin
is used as an analgesic in topical ointments, nasal sprays (Sinol-M), and dermal patches to relieve pain, typically in concentrations between 0.025% and 0.1%.[39] It may be applied in cream form for the temporary relief of minor aches and pains of muscles and joints associated with arthritis, backache, strains and sprains, often in compounds with other rubefacients.[39] It is also used to reduce the symptoms of peripheral neuropathy such as post-herpetic neuralgia caused by shingles.[39] Capsaicin transdermal patch (Qutenza) for the management of this particular therapeutic indication (pain due to post-herpetic neuralgia) was approved as a therapeutic by the U.S. FDA,[40] but a subsequent application for Qutenza
Qutenza
to be used as an analgesic in HIV
HIV
neuralgia was refused.[41] Although capsaicin creams have been used to treat psoriasis for reduction of itching,[39][42][43] a review of six clinical trials involving topical capsaicin for treatment of pruritus concluded there was insufficient evidence of effect.[44] There is insufficient clinical evidence to determine the role of ingested capsaicin on a variety of human disorders, including obesity, diabetes, cancer and cardiovascular diseases.[39] Pepper spray
Pepper spray
and pests[edit] Capsaicin
Capsaicin
is also an active ingredient in riot control and personal defense pepper spray agents.[45][46][47] When the spray comes in contact with skin, especially eyes or mucous membranes, it produces pain and breathing difficulty, discouraging protestors and assailants. Refer to the Scoville scale
Scoville scale
for a comparison of pepper spray to other sources of capsaicin. Capsaicin
Capsaicin
is also used to deter pests, specifically mammalian pests. Targets of capsaicin repellants include voles, deer, rabbits, squirrels, bears, insects, and attacking dogs.[48] Ground or crushed dried chili pods may be used in birdseed to deter rodents,[49] taking advantage of the insensitivity of birds to capsaicin. The Elephant Pepper Development Trust claims the use of chili peppers to improve crop security for rural African communities[citation needed]. Notably, an article published in the Journal of Environmental Science and Health in 2006 states that "Although hot chili pepper extract is commonly used as a component of household and garden insect-repellent formulas, it is not clear that the capsaicinoid elements of the extract are responsible for its repellency."[50] The first pesticide product using solely capsaicin as the active ingredient was registered with the U.S. Department of Agriculture in 1962.[48] Equestrian sports[edit] Capsaicin
Capsaicin
is a banned substance in equestrian sports because of its hypersensitizing and pain-relieving properties. At the show jumping events of the 2008 Summer Olympics, four horses tested positive for the substance, which resulted in disqualification.[51] Mechanism of action[edit] The burning and painful sensations associated with capsaicin result from its chemical interaction with sensory neurons. Capsaicin, as a member of the vanilloid family, binds to a receptor called the vanilloid receptor subtype 1 (TRPV1).[52] First cloned in 1997, TRPV1 is an ion channel-type receptor.[53] TRPV1, which can also be stimulated with heat, protons and physical abrasion, permits cations to pass through the cell membrane when activated. The resulting depolarization of the neuron stimulates it to signal the brain. By binding to the TRPV1
TRPV1
receptor, the capsaicin molecule produces similar sensations to those of excessive heat or abrasive damage, explaining why the spiciness of capsaicin is described as a burning sensation. Early research showed capsaicin to evoke a long-onset current in comparison to other chemical agonists, suggesting the involvement of a significant rate-limiting factor.[54] Subsequent to this, the TRPV1 ion channel has been shown to be a member of the superfamily of TRP ion channels, and as such is now referred to as TRPV1. There are a number of different TRP ion channels that have been shown to be sensitive to different ranges of temperature and probably are responsible for our range of temperature sensation. Thus, capsaicin does not actually cause a chemical burn, or indeed any direct tissue damage at all, when chili peppers are the source of exposure. The inflammation resulting from exposure to capsaicin is believed to be the result of the body's reaction to nerve excitement. For example, the mode of action of capsaicin in inducing bronchoconstriction is thought to involve stimulation of C fibers[55] culminating in the release of neuropeptides. In essence, the body inflames tissues as if it has undergone a burn or abrasion and the resulting inflammation can cause tissue damage in cases of extreme exposure, as is the case for many substances that cause the body to trigger an inflammatory response. Toxicity[edit] Acute health effects[edit] Capsaicin
Capsaicin
is a strong irritant requiring proper protective goggles, respirators, and proper hazardous material-handling procedures. Capsaicin
Capsaicin
takes effect upon skin contact (irritant, sensitizer), eye contact (irritant), ingestion, and inhalation (lung irritant, lung sensitizer). LD50 in mice is 47.2 mg/kg.[56][57] Painful exposures to capsaicin-containing peppers are among the most common plant-related exposures presented to poison centers.[58] They cause burning or stinging pain to the skin and, if ingested in large amounts by adults or small amounts by children, can produce nausea, vomiting, abdominal pain, and burning diarrhea. Eye exposure produces intense tearing, pain, conjunctivitis, and blepharospasm.[59] When used for weight loss in capsules, there has been a report of heart attack; this was thought to be due to excess sympathetic output.[60] Treatment after exposure[edit] The primary treatment is removal from exposure. Contaminated clothing should be removed and placed in airtight bags to prevent secondary exposure. For external exposure, bathing the mucous membrane surfaces that have contacted capsaicin with oily compounds such as vegetable oil, paraffin oil, petroleum jelly (Vaseline), creams, or polyethylene glycol is the most effective way to attenuate the associated discomfort;[citation needed] since oil and capsaicin are both hydrophobic hydrocarbons the capsaicin that has not already been absorbed into tissues will be picked up into solution and easily removed. Capsaicin
Capsaicin
can also be washed off the skin using soap, shampoo, or other detergents. Plain water is ineffective at removing capsaicin,[56] as are bleach, sodium metabisulfite and topical antacid suspensions.[citation needed] Capsaicin
Capsaicin
is soluble in alcohol, which can be used to clean contaminated items.[56] When capsaicin is ingested, cold milk is an effective way to relieve the burning sensation (due to caseins having a detergent effect on capsaicin[61]); and room-temperature sugar solution (10%) at 20 °C (68 °F) is almost as effective.[62] The burning sensation will slowly fade away over several hours if no actions are taken. Capsaicin-induced asthma might be treated with oral antihistamines or corticosteroids.[59] Effects on weight loss and regain[edit] There is no evidence showing that weight loss is directly correlated with ingesting capsaicin. Well-designed clinical studies have not been performed because the pungency of capsaicin in prescribed doses under research prevents subject compliance.[63] See also[edit]

Allicin, the active piquant flavor chemical in uncooked garlic, and to a lesser extent onions (see those articles for discussion of other chemicals in them relating to pungency, and eye irritation) Allyl isothiocyanate
Allyl isothiocyanate
(also allyl mercaptan), the active piquant chemical in mustard, radishes, horseradish, and wasabi Capsazepine, capsaicin antagonist Gingerol
Gingerol
and shogaol, the active piquant flavor chemicals in ginger List of investigational analgesics Naga Viper
Naga Viper
pepper, Bhut Jolokia Pepper, Carolina Reaper, Trinidad Moruga Scorpion; some of the world's most capsaicin-rich fruits Resiniferatoxin, an ultrapotent capsaicin analog in Euphorbia
Euphorbia
plants syn-Propanethial-S-oxide, the major active piquant chemical in onions Piperine, the active piquant flavor chemical in black pepper

References[edit] Footnotes[edit]

^ ChemSpider
ChemSpider
– Capsaicin ^ a b [1] ^ What Made Chili Peppers So Spicy? Talk
Talk
of the Nation, 15 August 2008. ^ History of early research on capsaicin:

Harvey W. Felter and John U. Lloyd, King's American Dispensatory (Cincinnati, Ohio: Ohio Valley Co., 1898), vol. 1, page 435. Available on-line at: Henriette's Herbal. Andrew G. Du Mez, "A century of the United States pharmocopoeia 1820–1920. I. The galenical oleoresins" (Ph.D. dissertation, University of Wisconsin, 1917), pages 111–132. Available on-line at: Archive.org. C. F. Bucholz (1816) "Chemische Untersuchung der trockenen reifen spanischen Pfeffers" [Chemical investigation of dry, ripe Spanish peppers], Almanach oder Taschenbuch für Scheidekünstler und Apotheker (Weimar) [Almanac or Pocket-book for Analysts (Chemists) and Apothecaries], vol. 37, pages 1–30. [Note: Christian Friedrich Bucholz's surname has been variously spelled as "Bucholz", "Bucholtz", or "Buchholz".] The results of Bucholz's and Braconnot's analyses of Capsicum
Capsicum
annuum appear in: Jonathan Pereira, The Elements of Materia Medica and Therapeutics, 3rd U.S. ed. (Philadelphia, Pennsylvania: Blanchard and Lea, 1854), vol. 2, page 506. Biographical information about Christian Friedrich Bucholz is available in: Hugh J. Rose, Henry J. Rose, and Thomas Wright, ed.s, A New General Biographical Dictionary (London, England: 1857), vol. 5, page 186. Biographical information about C. F. Bucholz is also available (in German) on-line at: Allgemeine Deutsche Biographie. Some other early investigators who also extracted the active component of peppers:

Benjamin Maurach (1816) "Pharmaceutisch-chemische Untersuchung des spanischen Pfeffers" (Pharmaceutical-chemical investigation of Spanish peppers), Berlinisches Jahrbuch für die Pharmacie, vol. 17, pages 63–73. Abstracts of Maurach's paper appear in: (i) Repertorium für die Pharmacie, vol. 6, page 117-119 (1819); (ii) Allgemeine Literatur-Zeitung, vol. 4, no. 18, page 146 (Feb. 1821); (iii) "Spanischer oder indischer Pfeffer", System der Materia medica ..., vol. 6, pages 381–386 (1821) (this reference also contains an abstract of Bucholz's analysis of peppers). French chemist Henri Braconnot
Henri Braconnot
(1817) "Examen chemique du Piment, de son principe âcre, et de celui des plantes de la famille des renonculacées" (Chemical investigation of the chili pepper, of its pungent principle [constituent, component], and of that of plants of the family Ranunculus), Annales de Chemie et de Physique, vol. 6, pages 122- 131. Danish geologist Johann Georg Forchhammer
Johann Georg Forchhammer
in: Hans C. Oersted (1820) "Sur la découverte de deux nouveaux alcalis végétaux" (On the discovery of two new plant alkalis), Journal de physique, de chemie, d'histoire naturelle et des arts, vol. 90, pages 173–174. German apothecary Ernst Witting (1822) "Considerations sur les bases vegetales en general, sous le point de vue pharmaceutique et descriptif de deux substances, la capsicine et la nicotianine" (Thoughts on the plant bases in general from a pharmaceutical viewpoint, and description of two substances, capsicin and nicotine), Beiträge für die pharmaceutische und analytische Chemie, vol. 3, pages 43ff.

^ In a series of articles, J. C. Thresh obtained capsaicin in almost pure form:

J. C. Thresh (1876) "Isolation of capsaicin," The Pharmaceutical Journal and Transactions, 3rd series, vol. 6, pages 941–947; J. C. Thresh (8 July 1876) "Capsaicin, the active principle in Capsicum
Capsicum
fruits," The Pharmaceutical Journal and Transactions, 3rd series, vol. 7, no. 315, pages 21 ff. [Note: This article is summarized in: "Capsaicin, the active principle in Capsicum
Capsicum
fruits," The Analyst, vol. 1, no. 8, pages 148–149, (1876).]. In The Pharmaceutical Journal and Transactions, volume 7, see also pages 259ff and 473 ff and in vol. 8, see pages 187ff; Year Book of Pharmacy… (1876), pages 250 and 543; J. C. Thresh (1877) "Note on Capsaicin," Year Book of Pharmacy…, pages 24–25; J. C. Thresh (1877) "Report on the active principle of Cayenne pepper," Year Book of Pharmacy..., pages 485–488.

^ Obituary notice of J. C. Thresh: "John Clough Thresh, M.D., D. Sc., and D.P.H". The British Medical Journal. 1 (3726): 1057–1058. 1932. doi:10.1136/bmj.1.3726.1057-c. PMC 2521090 . PMID 20776886.  ^ J King, H Wickes Felter, J Uri Lloyd (1905) A King's American Dispensatory. Eclectic Medical Publications (ISBN 1888483024) ^ Micko K (1898). "Zur Kenntniss des Capsaïcins" [On our knowledge of capsaicin]. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel (Journal for the Investigation of Necessities and Luxuries) (in German). 1: 818–829. doi:10.1007/bf02529190.  ^ Karl Micko (1899). "Über den wirksamen Bestandtheil des Cayennespfeffers" [On the active component of Cayenne pepper]. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel (in German). 2: 411–412. doi:10.1007/bf02529197.  ^ Nelson EK (1919). "The constitution of capsaicin, the pungent principle of capsicum". J. Am. Chem. Soc. 41: 1115–1121. doi:10.1021/ja02228a011.  ^ Späth E, Darling SF (1930). "Synthese des Capsaicins". Chem. Ber. 63B: 737–743.  ^ S Kosuge, Y Inagaki, H Okumura (1961). Studies on the pungent principles of red pepper. Part VIII. On the chemical constitutions of the pungent principles. Nippon Nogei Kagaku Kaishi (J. Agric. Chem. Soc.), 35, 923–927; (en) Chem. Abstr. 1964; 60, 9827g. ^ (ja) S Kosuge, Y Inagaki (1962) Studies on the pungent principles of red pepper. Part XI. Determination and contents of the two pungent principles. Nippon Nogei Kagaku Kaishi J. Agric. Chem. Soc., 36, pp. 251 ^ Rudolf Buchheim
Rudolf Buchheim
(1873) "Über die 'scharfen' Stoffe" (On the "hot" substance), Archiv der Heilkunde (Archive of Medicine), vol. 14, pages 1ff. See also: R. Buchheim (1872) "Fructus Capsici," Vierteljahresschrift für praktische Pharmazie (Quarterly Journal for Practical Pharmacy), vol. 4, pages 507ff.; reprinted (in English) in: Proceedings of the American Pharmaceutical Association, vol. 22, pages 106ff (1873). ^ Endre Hőgyes, "Adatok a paprika ( Capsicum
Capsicum
annuum) élettani hatásához" [Data on the physiological effects of the pepper ( Capsicum
Capsicum
annuum)], Orvos-természettudumányi társulatot Értesítője [Bulletin of the Medical Science Association] (1877); reprinted in: Orvosi Hetilap [Medical Journal] (1878), 10 pages. Published in German as: "Beitrage zur physiologischen Wirkung der Bestandtheile des Capiscum annuum (Spanischer Pfeffer)" [Contributions on the physiological effects of components of Capsicum
Capsicum
annuum (Spanish pepper)], Archiv für Experimentelle Pathologie und Pharmakologie, vol. 9, pages 117–130 (1878). See springerlink.com ^ F.A. Flückiger, Pharmakognosie des Pflanzenreiches ( Berlin, Germany: Gaertner's Verlagsbuchhandlung, 1891). ^ Bennett DJ, Kirby GW (1968). "Constitution and biosynthesis of capsaicin". J. Chem. Soc. C. 442: 442. doi:10.1039/j39680000442.  ^ Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C 4:442–446 ^ Leete E, Louden MC (1968). "Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum
Capsicum
frutescens". J Am Chem Soc. 90: 6837–6841. doi:10.1021/ja01026a049. PMID 5687710.  ^ Fujiwake H, Suzuki T, Iwai K (1982a) Intracellular distribution of enzymes and intermediates involved in biosynthesis of capsaicin and its analogues in Capsicum
Capsicum
fruits. Agric Biol Chem 46:2685–2689 ^ Fujiwake H, Suzuki T, Iwai K (1982b) Capsaicinoid formation in the protoplast from placenta of Capsicum
Capsicum
fruits. Agric Biol Chem 46:2591–2592 ^ Sukrasno N, Yeoman MM (1993). " Phenylpropanoid
Phenylpropanoid
metabolism during growth and development of Capsicum
Capsicum
frutescens fruits". Phytochemistry. 32: 839–844. doi:10.1016/0031-9422(93)85217-f.  ^ Suzuki T, Kawada T, Iwai K (1981) Formation and metabolism of pungent principle of Capsicum
Capsicum
fruits. 9. Biosynthesis of acyl moieties of capsaicin and its analogs from valine and leucine in Capsicum fruits. Plant Cell Physiol 22:23–32 ^ Curry
Curry
J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum
Capsicum
spp. Plant Sci 148:47–57 ^ Nelson EK, Dawson LE (1923). "Constitution of capsaicin, the pungent principle of Capsicum. III". J Am Chem Soc. 45: 2179–2181. doi:10.1021/ja01662a023.  ^ Stewart C, Kang BC, Liu K, et al. (June 2005). "The Pun1 gene for pungency in pepper encodes a putative acyltransferase". Plant J. 42 (5): 675–88. doi:10.1111/j.1365-313X.2005.02410.x. PMID 15918882.  ^ a b c Leete E, Louden MC (1968). "Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum
Capsicum
frutescens". J. Am. Chem. Soc. 90: 6837–6841. doi:10.1021/ja01026a049. PMID 5687710.  ^ a b c Bennett DJ, Kirby GW (1968). "Constitution and biosynthesis of capsaicin". J. Chem. Soc. C. 1968: 442–446.  ^ Fujiwake H.; Suzuki T.; Oka S.; Iwai K. (1980). "Enzymatic formation of capsaicinoid from vanillylamine and iso-type fatty acids by cell-free extracts of Capsicum
Capsicum
annuum var. annuum cv. Karayatsubusa". Agricultural and Biological Chemistry. 44: 2907–2912. doi:10.1271/bbb1961.44.2907.  ^ I. Guzman, P.W. Bosland, and M.A. O'Connell, "Chapter 8: Heat, Color, and Flavor Compounds in Capsicum
Capsicum
Fruit" in David R. Gang, ed., Recent Advances in Phytochemistry 41: The Biological Activity of Phytochemicals (New York, New York: Springer, 2011), pages 117–118. ^ Kozukue N, Han JS, Kozukue E, Lee SJ, Kim JA, Lee KR, Levin CE, Friedman M (2005). "Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry". J Agric Food Chem. 53: 9172–9181. doi:10.1021/jf050469j.  ^ Thiele R, Mueller-Seitz E, Petz M (2008). " Chili pepper
Chili pepper
fruits: presumed precursors of fatty acids characteristic for capsaicinoids". J Agric Food Chem. 56: 4219–4224. doi:10.1021/jf073420h.  ^ New Mexico State University – College of Agriculture and Home Economics (2005). "Chile Information – Frequently Asked Questions". Archived from the original on 4 May 2007. Retrieved 17 May 2007.  ^ Tewksbury, J. J.; Nabhan, G. P. (2001). "Seed dispersal. Directed deterrence by capsaicin in chilies". Nature. 412 (6845): 403–404. doi:10.1038/35086653. PMID 11473305.  ^ Joshua J. Tewksbury; Karen M. Reagan; Noelle J. Machnicki; Tomás A. Carlo; David C. Haak; Alejandra Lorena Calderón Peñaloza; Douglas J. Levey (19 August 2008), "Evolutionary ecology of pungency in wild chilies", Proceedings of the National Academy of Sciences, 105 (33): 11808–11811, doi:10.1073/pnas.0802691105, PMC 2575311 , PMID 18695236, retrieved 30 June 2010  ^ Siemens J, Zhou S, Piskorowski R, et al. (November 2006). "Spider toxins activate the capsaicin receptor to produce inflammatory pain". Nature. 444 (7116): 208–12. doi:10.1038/nature05285. PMID 17093448.  ^ a b c d e Gorman J (20 September 2010). "A Perk of Our Evolution: Pleasure in Pain of Chilies". New York Times. Retrieved 16 March 2015.  ^ a b Rollyson WD, et al. (2014). "Bioavailability of capsaicin and its implications for drug delivery". J Control Release. 196: 96–105. doi:10.1016/j.jconrel.2014.09.027. PMC 4267963 . PMID 25307998.  ^ a b c d e Fattori, V; Hohmann, M. S.; Rossaneis, A. C.; Pinho-Ribeiro, F. A.; Verri, W. A. (2016). "Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses". Molecules. 21 (7): 844. doi:10.3390/molecules21070844. PMID 27367653.  ^ "FDA Approves New Drug Treatment for Long-Term Pain Relief after Shingles
Shingles
Attacks". U.S. Food and Drug Administration. 17 November 2009. Retrieved 5 January 2016.  ^ Hitt E (9 March 2012). "FDA Turns Down Capsaicin
Capsaicin
Patch for Painful Neuropathy
Neuropathy
in HIV". Medscape Medical News, WebMD. Retrieved 5 January 2016.  ^ Glinski W, Glinska-Ferenz M, Pierozynska-Dubowska M (1991). "Neurogenic inflammation induced by capsaicin in patients with psoriasis". Acta dermato-venereologica. Acta Derm Venereol. 71 (1): 51–4. PMID 1711752.  ^ Ellis CN, Berberian B, Sulica VI, Dodd WA, Jarratt MT, Katz HI, Prawer S, Krueger G, Rex IH Jr, Wolf JE (1993). "A double-blind evaluation of topical capsaicin in pruritic psoriasis". J. Am. Acad. Dermatol. 29: 438–42. doi:10.1016/0190-9622(93)70208-B. PMID 7688774.  ^ Gooding SM, Canter PH, Coelho HF, Boddy K, Ernst E (2010). "Systematic review of topical capsaicin in the treatment of pruritus". Int J Dermatol. 49 (8): 858–65. doi:10.1111/j.1365-4632.2010.04537.x. PMID 21128913.  ^ Blum, Deborah (21 November 2011), "About Pepper Spray", Scientific-American Guest Blog (Web), London, UK: Macmillan Publishers, Ltd., retrieved 17 February 2016  ^ "Capsaicin", Toxicology Data Network (Database), Bethesda, MD: National Institutes of Health, 30 June 2006 [15 March 1983], retrieved 17 February 2016  ^ Smith, Gregory; Stopford, Woodhall (30 June 2006) [2007-08-17], "Health Hazards of Pepper Spray", North Carolina Medical Journal (Web), Morrisville, NC: North Carolina Institute of Medicine, ISSN 0029-2559, archived from the original on 17 August 2000  ^ a b "R.E.D. Facts for Capsaicin" (PDF). United States Environmental Protection Agency. Archived from the original (PDF) on 24 October 2012. Retrieved 13 November 2012.  ^ Jensen, P. G.; Curtis, P. D.; Dunn, J. A.; Austic, R. E.; Richmond, M. E. (2003). "Field evaluation of capsaicin as a rodent aversion agent for poultry feed". Pest Management Science. 59 (9): 1007–1015. doi:10.1002/ps.705. PMID 12974352.  ^ Antonious GF, Meyer JE, Snyder JC (2006). "Toxicity and repellency of hot pepper extracts to spider mite, Tetranychus urticae Koch". J Environ Sci Health B. 41 (8): 1383–91. doi:10.1080/0360123060096419. PMID 17090499.  ^ "Olympic horses fail drugs tests". BBC News. 21 August 2008. Retrieved 1 April 2010.  ^ Story GM, Crus-Orengo L (July–August 2007). "Feel the burn". American Scientist. 95 (4): 326–333. doi:10.1511/2007.66.326.  ^ Caterina, MJ; Schumacher, MA; Tominaga, M; Rosen, TA; Levine, JD; Julius, D (23 October 1997). "The capsaicin receptor: a heat-activated ion channel in the pain pathway". Nature. 389 (6653): 816–24. doi:10.1038/39807. PMID 9349813.  ^ Geppetti, Pierangelo & Holzer, Peter (1996). Neurogenic Inflammation. CRC Press, 1996. ^ Fuller, R. W., Dixon, C. M. S. & Barnes, P. J. (1985). Bronchoconstrictor response to inhaled capsaicin in humans" J. Appl. Physiol 58, 1080–1084. PubMed, CAS, Web of Science® Times Cited: 174 ^ a b c " Capsaicin
Capsaicin
Material Safety Data Sheet" (PDF). sciencelab.com. 2007. Retrieved 13 July 2007.  ^ Johnson, Wilbur (2007). "Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin". Int. J. Toxicol. 26 Suppl 1: 3–106. doi:10.1080/10915810601163939. PMID 17365137.  ^ Krenzelok, E. P.; Jacobsen, T. D. (1997-08-01). "Plant exposures ... a national profile of the most common plant genera". Veterinary and Human Toxicology. 39 (4): 248–249. ISSN 0145-6296. PMID 9251180.  ^ a b Goldfrank, L R. (ed.). Goldfrank's Toxicologic Emergencies. New York, New York: McGraw-Hill. p. 1167. ISBN 0-07-144310-X.  ^ Sayin MR, et al. A case of acute myocardial infarction due to the use of cayenne pepper pills. Wiener Klinische Wochenschrift-The Central European Journal of Medicine (2012) 124:285–287 ^ General Chemistry Online: Fire and Spice ^ Wu Nasrawia, Christina; Marie Pangborn, Rose (April 1990). "Temporal effectiveness of mouth-rinsing on capsaicin mouth-burn". Physiol. Behav. 47: 617–23. doi:10.1016/0031-9384(90)90067-E. PMID 2385629.  ^ Diepvens K, Westerterp KR, Westerterp-Plantenga MS (2007). "Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea". Am J Physiol: Regulatory, Integrative and Comparative Physiology. 292 (1): R77–85. doi:10.1152/ajpregu.00832.2005. PMID 16840650. 

Further reading[edit]

Abdel-Salam, Omar M. E. [ed.]: Capsaicin
Capsaicin
as a Therapeutic
Therapeutic
Molecule. Springer, 2014. ISBN 978-3-0348-0827-9 (print); ISBN 978-3-0348-0828-6 (eBook).

External links[edit]

Wikimedia Commons has media related to Capsaicin.

Look up capsaicin in Wiktionary, the free dictionary.

Capsaicin
Capsaicin
Technical Fact Sheet – National Pesticide Information Center Fire and Spice: The molecular basis for flavor

v t e

TRP channel modulators

TRPA

Activators

4-Hydroxynonenal 4-Oxo-2-nonenal 4,5-EET 12S-HpETE 15-Deoxy-Δ12,14-prostaglandin J2 α- Sanshool
Sanshool
(ginger, Sichuan and melegueta peppers) Acrolein Allicin
Allicin
(garlic) Allyl isothiocyanate
Allyl isothiocyanate
(mustard, radish, horseradish, wasabi) AM404 Bradykinin Cannabichromene
Cannabichromene
(cannabis) Cannabidiol
Cannabidiol
(cannabis) Cannabigerol
Cannabigerol
(cannabis) Cinnamaldehyde
Cinnamaldehyde
(cinnamon) CR gas
CR gas
(dibenzoxazepine; DBO) CS gas
CS gas
(2-chlorobenzal malononitrile) Curcumin
Curcumin
(turmeric) Dehydroligustilide (celery) Diallyl disulfide Dicentrine
Dicentrine
( Lindera
Lindera
spp.) Farnesyl thiosalicylic acid Formalin Gingerols (ginger) Hepoxilin A3 Hepoxilin B3 Hydrogen peroxide Icilin Isothiocyanate Ligustilide (celery, Angelica acutiloba) Linalool
Linalool
(Sichuan pepper, thyme) Methylglyoxal Methyl salicylate
Methyl salicylate
(wintergreen) N-Methylmaleimide Nicotine
Nicotine
(tobacco) Oleocanthal
Oleocanthal
(olive oil) Paclitaxel
Paclitaxel
(Pacific yew) Paracetamol
Paracetamol
(acetaminophen) PF-4840154 Phenacyl chloride Polygodial
Polygodial
(Dorrigo pepper) Shogaols (ginger, Sichuan and melegueta peppers) Tear gases Tetrahydrocannabinol
Tetrahydrocannabinol
(cannabis) Thiopropanal S-oxide
Thiopropanal S-oxide
(onion) Umbellulone
Umbellulone
(Umbellularia californica) WIN 55,212-2

Blockers

Dehydroligustilide (celery) Nicotine
Nicotine
(tobacco) Ruthenium red

TRPC

Activators

Adhyperforin
Adhyperforin
(St John's wort) Diacyl glycerol GSK1702934A Hyperforin
Hyperforin
(St John's wort) Substance P

Blockers

DCDPC DHEA-S Flufenamic acid GSK417651A GSK2293017A Meclofenamic acid N-(p-amylcinnamoyl)anthranilic acid Niflumic acid Pregnenolone sulfate Progesterone Pyr3 Tolfenamic acid

TRPM

Activators

ADP-ribose BCTC Calcium
Calcium
(intracellular) Cold Coolact P Cooling Agent 10 CPS-369 Eucalyptol
Eucalyptol
(eucalyptus) Frescolat MGA Frescolat ML Geraniol Hydroxycitronellal Icilin Linalool Menthol
Menthol
(mint) PMD 38 Pregnenolone sulfate Rutamarin (Ruta graveolens) Steviol glycosides (e.g., stevioside) (Stevia rebaudiana) Sweet tastants (e.g., glucose, fructose, sucrose; indirectly) Thio-BCTC WS-3 WS-12 WS-23

Blockers

Capsazepine Clotrimazole DCDPC Flufenamic acid Meclofenamic acid Mefenamic acid N-(p-amylcinnamoyl)anthranilic acid Nicotine
Nicotine
(tobacco) Niflumic acid Ruthenium red Rutamarin (Ruta graveolens) Tolfenamic acid TPPO

TRPML

Activators

MK6-83 PI(3,5)P2 SF-22

TRPP

Activators

Triptolide
Triptolide
(Tripterygium wilfordii)

Blockers

Ruthenium red

TRPV

Activators

2-APB 5',6'-EET 9-HODE 9-oxoODE 12S-HETE 12S-HpETE 13-HODE 13-oxoODE 20-HETE α- Sanshool
Sanshool
(ginger, Sichuan and melegueta peppers) Allicin
Allicin
(garlic) AM404 Anandamide Bisandrographolide (Andrographis paniculata) Camphor
Camphor
(camphor laurel, rosemary, camphorweed, African blue basil, camphor basil) Cannabidiol
Cannabidiol
(cannabis) Cannabidivarin
Cannabidivarin
(cannabis) Capsaicin
Capsaicin
(chili pepper) Carvacrol
Carvacrol
(oregano, thyme, pepperwort, wild bergamot, others) DHEA Diacyl glycerol Dihydrocapsaicin
Dihydrocapsaicin
(chili pepper) Estradiol Eugenol
Eugenol
(basil, clove) Evodiamine
Evodiamine
(Euodia ruticarpa) Gingerols (ginger) GSK1016790A Heat Hepoxilin A3 Hepoxilin B3 Homocapsaicin
Homocapsaicin
(chili pepper) Homodihydrocapsaicin
Homodihydrocapsaicin
(chili pepper) Incensole
Incensole
(incense) Lysophosphatidic acid Low pH (acidic conditions) Menthol
Menthol
(mint) N-Arachidonoyl dopamine N-Oleoyldopamine N-Oleoylethanolamide Nonivamide
Nonivamide
(PAVA) (PAVA spray) Nordihydrocapsaicin
Nordihydrocapsaicin
(chili pepper) Paclitaxel
Paclitaxel
(Pacific yew) Paracetamol
Paracetamol
(acetaminophen) Phorbol esters
Phorbol esters
(e.g., 4α-PDD) Piperine
Piperine
(black pepper, long pepper) Polygodial
Polygodial
(Dorrigo pepper) Probenecid Protons RhTx Rutamarin (Ruta graveolens) Resiniferatoxin
Resiniferatoxin
(RTX) ( Euphorbia
Euphorbia
resinifera/pooissonii) Shogaols (ginger, Sichuan and melegueta peppers) Tetrahydrocannabivarin
Tetrahydrocannabivarin
(cannabis) Thymol
Thymol
(thyme, oregano) Tinyatoxin
Tinyatoxin
( Euphorbia
Euphorbia
resinifera/pooissonii) Tramadol Vanillin
Vanillin
(vanilla) Zucapsaicin

Blockers

α- Spinasterol
Spinasterol
( Vernonia
Vernonia
tweediana) AMG-517 Asivatrep BCTC Cannabigerol
Cannabigerol
(cannabis) Cannabigerolic acid (cannabis) Cannabigerovarin (cannabis) Cannabinol
Cannabinol
(cannabis) Capsazepine DCDPC DHEA DHEA-S Flufenamic acid GRC-6211 HC-067047 Lanthanum Meclofenamic acid N-(p-amylcinnamoyl)anthranilic acid NGD-8243 Niflumic acid Pregnenolone sulfate RN-1734 RN-9893 Ruthenium red SB-705498 Tivanisiran Tolfenamic acid

See also: Receptor/signaling modulators • Ion channel
Ion channel
modulators

Authority control

LCCN: sh85020016 GN

.