Capillary pressure
   HOME

TheInfoList



OR:

In
fluid statics Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body " fluids at hydrostatic equilibrium and the pressure in a fluid, or exerted by a fluid, on an im ...
, capillary pressure () is the pressure between two
immiscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also appli ...
fluids in a thin tube (see
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and industrial purposes (namely microfluidic design and oil extraction from porous rock). It is also observed in natural phenomena.


Definition

Capillary pressure is defined as: :p_c=p_-p_ where: :p_is the capillary pressure :p_ is the pressure of the non-wetting phase :p_ is the pressure of the
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with ...
phase The wetting phase is identified by its ability to preferentially diffuse across the capillary walls before the non-wetting phase. The "wettability" of a fluid depends on its surface tension, the forces that drive a fluid's tendency to take up the minimal amount of space possible, and it is determined by the contact angle of the fluid.Fanchi, John R.. (2006)
Principles of Applied Reservoir Simulation
(3rd Edition). Elsevier.
A fluid's "wettability" can be controlled by varying capillary surface properties (''e.g.'' roughness, hydrophilicity). However, in oil-water systems, water is typically the
wetting Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with ...
phase, while for gas-oil systems, oil is typically the non-wetting phase. Regardless of the system, a pressure difference arises at the resulting curved interface between the two fluids.


Equations

Capillary pressure formulas are derived from the pressure relationship between two fluid phases in a capillary tube in equilibrium, which is that force up = force down. These forces are described as: : : These forces can be described by the interfacial tension and contact angle of the fluids, and the radius of the capillary tube. An interesting phenomena, capillary rise of water (as pictured to the right) provides a good example of how these properties come together to drive flow through a capillary tube and how these properties are measured in a system. There are two general equations that describe the force up and force down relationship of two fluids in equilibrium. The
Young–Laplace equation In physics, the Young–Laplace equation () is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or w ...
is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: :p_c=\frac where: :\gamma is the
interfacial tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) t ...
:r is the effective radius of the interface :\theta is the wetting angle of the liquid on the surface of the capillary The force down formula for capillary pressure is seen as: :p_c=\frac=h(\Gamma_w-\Gamma_) where: :h is the height of the capillary rise :\Gamma_w is the density gradient of the wetting phase :\Gamma_ is the density gradient of the non-wetting phase


Applications


Microfluidics

Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter) at which surface forces dominate volumetric forces. It is a multidisciplinary field th ...
is the study and design of the control or transport of small volumes of fluid flow through porous material or narrow channels for a variety of applications (''e.g.'' mixing, separations). Capillary pressure is one of many geometry-related characteristics that can be altered in a microfluidic device to optimize a certain process. For instance, as the capillary pressure increases, a wettable surface in a channel will pull the liquid through the conduit. This eliminates the need for a pump in the system, and can make the desired process completely autonomous. Capillary pressure can also be utilized to block fluid flow in a microfluidic device. The capillary pressure in a microchannel can be described as: :p_c=-\gamma\left(\frac+\frac\right) where: : is the surface tension of the liquid : is the contact angle at the bottom : is the contact angle at the top : is the contact angle at the left side of the channel : is the contact angles at the right side of the channel : is the depth : is the width Thus, the capillary pressure can be altered by changing the surface tension of the fluid, contact angles of the fluid, or the depth and width of the device channels. To change the surface tension, one can apply a
surfactant Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsion#Emulsifiers , ...
to the capillary walls. The contact angles vary by sudden expansion or contraction within the device channels. A positive capillary pressure represents a valve on the fluid flow while a negative pressure represents the fluid being pulled into the microchannel.


Measurement Methods

Methods for taking physical measurements of capillary pressure in a microchannel have not been thoroughly studied, despite the need for accurate pressure measurements in microfluidics. The primary issue with measuring the pressure in microfluidic devices is that the volume of fluid is too small to be used in standard pressure measurement tools. Some studies have presented the use of microballoons, which are size-changing pressure sensors. Servo-nulling, which is historically used for measuring blood pressure, has also been demonstrated to provide pressure information in microfluidic channels with the assistance of a LabVIEW control system. Essentially, a micropipette is immersed in the microchannel fluid and is programmed to respond to changes in the fluid meniscus. A displacement in the meniscus of the fluid in the micropipette induces a voltage drop, which triggers a pump to restore the original position of the meniscus. The pressure exerted by the pump is interpreted as the pressure within the microchannel.


Examples

Current research in microfluidics is focused on developing
point-of-care Clinical point of care (POC) is the point in time when clinicians deliver healthcare products and services to patients at the time of care. Clinical documentation Clinical documentation is a record of the critical thinking and judgment of a heal ...
diagnostics and cell sorting techniques (see
lab-on-a-chip A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening. ...
), and understanding cell behavior (''e.g.'' cell growth, cell aging). In the field of diagnostics, the lateral flow test is a common microfluidic device platform that utilizes capillary forces to drive fluid transport through a porous membrane. The most famous lateral flow test is the take home
pregnancy test A pregnancy test is used to determine whether a female is pregnant or not. The two primary methods are testing for the female pregnancy hormone (human chorionic gonadotropin (hCG)) in blood or urine using a pregnancy test kit, and scanning with ...
, in which bodily fluid initially wets and then flows through the porous membrane, often cellulose or glass fiber, upon reaching a capture line to indicate a positive or negative signal. An advantage to this design, and several other microfluidic devices, is its simplicity (for example, its lack of human intervention during operation) and low cost. However, a disadvantage to these tests is that capillary action cannot be controlled after it has started, so the test time cannot be sped up or slowed down (which could pose an issue if certain time-dependent processes are to take place during the fluid flow). Another example of point-of-care work involving a capillary pressure-related design component is the separation of plasma from whole blood by filtration through porous membrane. Efficient and high-volume separation of plasma from whole blood is often necessary for infectious disease diagnostics, like the HIV viral load test. However, this task is often performed through centrifugation, which is limited to clinical laboratory settings. An example of this point-of-care filtration device is a packed-bed filter, which has demonstrated the ability to separate plasma and whole blood by utilizing asymmetric capillary forces within the membrane pores.


Petrochemical industry

Capillary pressure plays a vital role in extracting sub-surface hydrocarbons (such as petroleum or natural gas) from underneath porous reservoir rocks. Its measurements are utilized to predict reservoir fluid saturations and cap-rock seal capacity, and for assessing relative permeability (the ability of a fluid to be transported in the presence of a second immiscible fluid) data. Additionally, capillary pressure in porous rocks has been shown to affect phase behavior of the reservoir fluids, thus influencing extraction methods and recovery. It is crucial to understand these geological properties of the reservoir for its development, production, and management (''e.g.'' how easy it is to extract the hydrocarbons). The
Deepwater Horizon oil spill The ''Deepwater Horizon'' oil spill (also referred to as the "BP oil spill") was an industrial disaster that began on 20 April 2010 off of the coast of the United States in the Gulf of Mexico on the BP-operated Macondo Prospect, considere ...
is an example of why capillary pressure is significant to the
petrochemical industry The petrochemical industry is concerned with the production and trade of petrochemicals. A major part is constituted by the plastics (polymer) industry. It directly interfaces with the petroleum industry, especially the downstream sector. Comp ...
. It is believed that upon the Deepwater Horizon oil rig’s explosion in the Gulf of Mexico in 2010, methane gas had broken through a recently implemented seal, and expanded up and out of the rig. Although capillary pressure studies (or potentially a lack thereof) do not necessarily sit at the root of this particular oil spill, capillary pressure measurements yield crucial information for understanding reservoir properties that could have influenced the engineering decisions made in the Deepwater Horizon event. Capillary pressure, as seen in petroleum engineering, is often modeled in a laboratory where it is recorded as the pressure required to displace some wetting phase by a non-wetting phase to establish equilibrium. For reference, capillary pressures between air and brine (which is a significant system in the petrochemical industry) have been shown to range between 0.67 and 9.5 MPa. There are various ways to predict, measure, or calculate capillary pressure relationships in the oil and gas industry. These include the following:


Leverett J-function

The Leverett J-function serves to provide a relationship between the capillary pressure and the pore structure (see Leverett J-function).


Mercury Injection

This method is well suited to irregular rock samples (''e.g.'' those found in drill cuttings) and is typically used to understand the relationship between capillary pressure and the porous structure of the sample. In this method, the pores of the sample rock are evacuated, followed by mercury filling the pores with increasing pressure. Meanwhile, the volume of mercury at each given pressure is recorded and given as a pore size distribution, or converted to relevant oil/gas data. One pitfall to this method is that it does not account for fluid-surface interactions. However, the entire process of injecting mercury and collecting data occurs rapidly in comparison to other methods.


Porous Plate Method

The Porous Plate Method is an accurate way to understand capillary pressure relationships in fluid-air systems. In this process, a sample saturated with water is placed on a flat plate, also saturated with water, inside a gas chamber. Gas is injected at increasing pressures, thus displacing the water through the plate. The pressure of the gas represents the capillary pressure, and the amount of water ejected from the porous plate is correlated to the water saturation of the sample.


Centrifuge Method

The centrifuge method relies on the following relationship between capillary pressure and gravity: :p_c=hg(\rho_w-\rho_) where: :h is the height of the capillary rise :g is gravity :\rho_w is the density of the wetting phase :\rho_ is the density of the non-wetting phase The centrifugal force essentially serves as an applied capillary pressure for small test plugs, often composed of brine and oil. During the centrifugation process, a given amount of brine is expelled from the plug at certain centrifugal rates of rotation. A glass vial measures the amount of fluid as it is being expelled, and these readings result in a curve that relates rotation speeds with drainage amounts. The rotation speed is correlated to capillary pressure by the following equation: :p_c=7.9e^(\rho_1-\rho_2)\omega^2(r_b^2-r_t^2) where: :r_b is the radius of rotation of the bottom of the core sample :r_t is the radius of rotation of the top of the core sample :\omega is the rotational speed The primary benefits to this method are that it's rapid (producing curves in a matter of hours) and is not restricted to being performed at certain temperatures. Other methods include the Vapor Pressure Method, Gravity-Equilibrium Method, Dynamic Method, Semi-dynamic Method, and the Transient Method.


Correlations

In addition to measuring the capillary pressure in a laboratory setting to model that of an oil/natural gas reservoir, there exist several relationships to describe the capillary pressure given specific rock and extraction conditions. For example, R. H. Brooks and A. T. Corey developed a relationship for capillary pressure during the drainage of oil from an oil-saturated porous medium experiencing a gas invasion: :p_=p_t(\frac)^ where: :P_ is the capillary pressure between oil and gas phases :S_o is the oil saturation :S_ is the residual oil saturation that remains trapped in the pore at high capillary pressure :P_t is the threshold pressure (the pressure at which the gas phase is allowed to flow) :\lambda is a parameter that is related to the distribution of pore sizes :\lambda>2 for narrow distributions :\lambda<2 for wide distributions Additionally, R. G. Bentsen and J. Anli developed a correlation for the capillary pressure during the drainage from a porous rock sample in which an oil phase displaces saturated water: :p_=p_t-p_ln(\frac) where: :P_ is the capillary pressure between oil and water phases :P_ is a parameter that controls the shape of the capillary pressure function :(\frac) is the normalized wetting-phase saturation :S_w is the saturation of the wetting phase :S_ is the irreducible wetting-phase saturation


Averaging capillary pressure vs. water saturation curves

It has been shown that as reservoir simulators use the primary drainage capillary pressure data for saturation-height modeling calculations, primary drainage capillary pressure data should be averaged in the same manner that water saturations are averaged. Also, as reservoir simulators use the imbibition and secondary drainage capillary pressure data for fluids displacement calculations, these capillary pressures should not be averaged like primary drainage capillary pressure data. These can be averaged by Leverett J-function. The averaging equations are as follows


averaging primary drainage capillary pressure vs. normalized saturation data

:\text = \frac in which n is the number of core samples, \phi is the effective porosity, Vb is the bulk volume of sample, and Pc is the primary drainage capillary pressure data vs. normalized water saturation.


averaging imbibition and secondary drainage capillary pressure vs. normalized saturation data

:\text = \frac in which n is the number of core samples, \phi is the effective porosity, k is the absolute permeability, \gamma is the interfacial tension or IFT, and Pc is the imbibition or secondary drainage capillary pressure data vs. normalized water saturation.


In nature


Needle ice

In addition to being manipulated for medical and energy applications, capillary pressure is the cause behind various natural phenomena as well. For example, needle ice, seen in cold soil, occurs via
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
. The first major contributions to the study of needle ice, or simply,
frost heaving Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated in ...
were made by Stephen Taber (1929) and Gunnar Beskow (1935), who independently aimed to understand soil freezing. Taber’s initial work was related to understanding how the size of pores within the ground influenced the amount of frost heave. He also discovered that frost heave is favorable for crystal growth and that a gradient of soil moisture tension drives water upward toward the freezing front near the top of the ground. In Beskow’s studies, he defined this soil moisture tension as “capillary pressure” (and soil water as “capillary water”). Beskow determined that the soil type and effective stress on the soil particles influenced frost heave, where effective stress is the sum of pressure from above ground and the capillary pressure. In 1961, D.H. Everett elaborated on Taber and Beskow’s studies to understand why pore spaces filled with ice continue to experience ice growth. He utilized thermodynamic equilibrium principles, a piston cylinder model for ice growth and the following equation to understand the freezing of water in porous media (directly applicable to the formation of needle ice): :P_s-P_l=\Psi_\frac=\Psi_\tilde where: : is the pressure of the solid crystal : is the pressure in the surrounding liquid : is the interfacial tension between the solid and the liquid : is the surface area of the phase boundary : is the volume of the crystal :\tilde is the mean curvature of the solid/liquid interface With this equation and model, Everett noted the behavior of water and ice given different pressure conditions at the solid-liquid interface. Everett determined that if the pressure of the ice is equal to the pressure of the liquid underneath the surface, ice growth is unable to continue into the capillary. Thus, with additional heat loss, it is most favorable for water to travel up the capillary and freeze in the top cylinder (as needle ice continues to grow atop itself above the soil surface). As the pressure of the ice increases, a curved interface between the solid and liquid arises and the ice will either melt, or equilibrium will be reestablished so that further heat loss again leads to ice formation. Overall, Everett determined that frost heaving (analogous to the development of needle ice) occurs as a function of the pore size in the soil and the energy at the interface of ice and water. Unfortunately, the downside to Everett's model is that he did not consider soil particle effects on the surface.


Circulatory system

Capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
in the
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
are vital to providing nutrients and excreting waste throughout the body. There exist pressure gradients (due to hydrostatic and
oncotic pressure Oncotic pressure, or colloid osmotic-pressure, is a form of osmotic pressure induced by the proteins, notably albumin, in a blood vessel's plasma (blood/liquid) that causes a pull on fluid back into the capillary. Participating colloids displace ...
s) in the capillaries that control blood flow at the capillary level, and ultimately influence the capillary exchange processes (''e.g.'' fluid flux). Due to limitations in technology and bodily structure, most studies of capillary activity are done in the retina, lip and skin, historically through cannulation or a servo-nulling system. Capillaroscopy has been used to visualize capillaries in the skin in 2D, and has been reported to observe an average range of capillary pressure of 10.5 to 22.5 mmHg in humans, and an increase in pressure among people with
type 1 diabetes Type 1 diabetes (T1D), formerly known as juvenile diabetes, is an autoimmune disease that originates when cells that make insulin (beta cells) are destroyed by the immune system. Insulin is a hormone required for the cells to use blood sugar f ...
and
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high b ...
. Relative to other components of the circulatory system, capillary pressure is low, as to avoid rupturing, but sufficient for facilitating capillary functions.


See also

*
Capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
*
Capillary number In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquid ...
*
Disjoining pressure In surface chemistry, disjoining pressure (symbol ) according to an IUPAC definition arises from an attractive interaction between two surfaces. For two flat and parallel surfaces, the value of the disjoining pressure (i.e., the force per unit ar ...
* Leverett J-function *
Young–Laplace equation In physics, the Young–Laplace equation () is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or w ...
* Laplace pressure *
Surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) t ...
*
Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter) at which surface forces dominate volumetric forces. It is a multidisciplinary field th ...
*
Water_retention_curve Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. This curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the ...
* TEM-function *
USBM wettability index The U.S. Bureau of Mines (USBM), developed by Donaldson et al. in 1969, is a method to measure wettability of petroleum reservoir rocks. In this method, the areas under the forced displacement Capillary pressure curves of oil and water drive proces ...


References

{{reflist Fluid dynamics