Caffeine-induced anxiety disorder
   HOME

TheInfoList



OR:

Caffeine-induced anxiety disorder is a subclass of the
DSM-5 The ''Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition'' (DSM-5), is the 2013 update to the '' Diagnostic and Statistical Manual of Mental Disorders'', the taxonomic and diagnostic tool published by the American Psychiatri ...
diagnosis of substance/medication-induced anxiety disorder. Consumption of
caffeine Caffeine is a central nervous system (CNS) stimulant of the methylxanthine chemical classification, class. It is mainly recreational drug use, used recreationally as a Nootropic, cognitive enhancer, increasing alertness and attentional perfor ...
has long been linked to anxiety. The effects of caffeine and the symptoms of anxiety both increase activity within the
sympathetic nervous system The sympathetic nervous system (SNS) is one of the three divisions of the autonomic nervous system, the others being the parasympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of t ...
. Caffeine has been linked to the aggravation and maintenance of anxiety disorders, and the initiation of panic or anxiety attacks in those who are already predisposed to such phenomena. Caffeine usage surpassing 200 mg has been shown to increase the likelihood for anxiety and panic attacks in a population. Individuals with panic attack disorder have a higher risk of developing a panic attack when consuming caffeine than when they do not. Excessive amounts of caffeine can result in symptoms from general anxiety to obsessive-compulsive and phobic symptoms.


DSM-5 classification


Diagnostic criteria

Caffeine-induced anxiety disorder is a subclass of the
DSM-5 The ''Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition'' (DSM-5), is the 2013 update to the '' Diagnostic and Statistical Manual of Mental Disorders'', the taxonomic and diagnostic tool published by the American Psychiatri ...
diagnosis of substance/medication-induced anxiety disorder. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, or DSM-5, is the current authority for psychiatric diagnosis in the United States. Substance/medication-induced anxiety disorder falls under the category of
anxiety disorder Anxiety disorders are a cluster of mental disorders characterized by significant and uncontrollable feelings of anxiety and fear such that a person's social, occupational, and personal function are significantly impaired. Anxiety may cause phy ...
s in the DSM-5, and not the category of substance-related and addictive disorders, even though the symptoms are due to the effects of a substance. Diagnosis according to the DSM-5 is dependent on various criteria. Patients must present symptoms of either panic attacks or anxiety. There must also be evidence that the panic or anxiety symptoms are a direct result of the use of the intoxicating substance. In caffeine-induced anxiety disorder, such symptoms would be due to the consumption of caffeine. The DSM-5 makes the distinction that the substance must be physiologically capable of leading to the anxiety and panic symptoms. This establishes the relationship between the abused chemical agent and the observed clinical effects. Caffeine has been proven to act as an antagonist on adenosine receptors, which acts as a stimulant and therefore fulfills this criteria. Symptoms must also not have a more likely clinical cause, such as another type of anxiety disorder, come before the ingestion of the intoxicating substance, or last for an extended amount of time after stopping the use of the substance. Diagnosis also requires that the panic attacks or anxiety due to the use of the intoxicating substance cause a certain amount of disturbance in the patient or lead to deficiency of varying types of daily performance.


Diagnostic features

In addition to the criteria above, it is important to recognize that the diagnostic criteria for substance/medication-induced anxiety disorder are not met if the symptoms of panic come before the intoxication by the substance. In caffeine-induced anxiety disorder, a diagnosis will not be made if symptoms of anxiety or panic precede the ingestion of caffeine. Also, if symptoms persist for more than one month after substance intoxication, the diagnosis cannot be made. Persistence and continuation of symptoms beyond the initial consumption of caffeine suggest an alternate diagnosis that would better explain the long-lasting symptoms. Anxiety symptoms caused by caffeine are often mistaken for serious mental disorders including
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of Depression (mood), depression and periods of abnormally elevated Mood (psychology), mood that last from days to weeks each. If the elevat ...
and
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social w ...
, leaving patients medicated for the wrong issue. A caffeine-induced anxiety disorder diagnosis should be made, rather than a substance abuse or intoxication diagnosis, when symptoms of panic attacks or anxiety predominate.


Prevalence

Although exact rates of prevalence are not available, general population data shows a 0.002% prevalence over a year-long period and higher prevalence within clinical populations.


Caffeine

Caffeine is a methylxanthine, and is hydrophobic. The structure of caffeine allows the molecule to pass freely through biological membranes including the blood-brain barrier. Absorption in the gastrointestinal tract reaches near completion at about 99% after only 45 minutes.
Half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of caffeine for most adults is between 2.5 and 4.5 hours when consumption is limited to less than 10 mg/kg. However, during neonatal development, half-life for the fetus is significantly longer and decreases exponentially after birth to reach a normal rate at about 6 months. Cytochrome P-450, a hemeprotein, acts in liver
microsome In cell biology, microsomes are heterogeneous vesicle-like artifacts (~20-200 nm diameter) re-formed from pieces of the endoplasmic reticulum (ER) when eukaryotic cells are broken-up in the laboratory; microsomes are not present in healthy, li ...
s to metabolize caffeine into dimethylxanthines, monomethylxanthines, dimethyl uric acids, monomethyl uric acids, trimethylallantoin, dimethylallantoin, and derivatives of
uracil Uracil () (symbol U or Ura) is one of the four nucleobases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced b ...
. Most caffeine is metabolized by 3-methyl demethylation, forming the metabolite of paraxanthine. Many metabolites, in addition to caffeine, act within the body and are partly responsible for the physiological response to caffeine.


Mechanism of caffeine action

Caffeine acts in multiple ways within the brain and the rest of the body. However, due to the concentration of caffeine required, antagonism of
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9- glycosidic bond. Adenosine is one of the four nucleoside building ...
receptors is the primary mode of action. The following mechanisms are ways in which caffeine may act within the body, but depending on necessary caffeine concentration and other factors may not be responsible for the clinical effects of the substance.


Mobilization of intracellular calcium

At very high concentrations of about 1–2 mM, caffeine lowers the excitability threshold in muscle cells, leading to prolonged contraction. The introduction of such high doses of caffeine allows calcium to enter the muscle cell through the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
and
sarcoplasmic reticulum The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are ke ...
more readily. Influx of calcium through the membranes in muscle cells requires at least 250 μM of caffeine. Normally, other toxic effects of caffeine begin to occur in concentrations over 200 μM, however average consumption averages lead to concentrations less than 100 μM. This means that calcium influx and mobilization are most likely not the cause of caffeine's effect on the central nervous system, and are therefore not the cause of caffeine-induced anxiety disorder.


Inhibition of phosphodiesterases

Methylxanthines such as caffeine inhibit the action of cyclic nucleotide phosphodiesterase, which normally acts to break down
cAMP Camp may refer to: Outdoor accommodation and recreation * Campsite or campground, a recreational outdoor sleeping and eating site * a temporary settlement for nomads * Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
. Cyclic adenosine monophosphate, or cAMP, is a second messenger important in many cellular processes and is a critical factor in
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
. The inhibition of the phosphodiesterase would lead to a buildup of cAMP, increasing the activity of the second messenger throughout the cell. Though this mechanism is possible, it only occurs after levels of caffeine have reached a toxic level, and therefore it is unlikely to explain the mechanism of caffeine in the brain.


Antagonism of adenosine receptors

There are four well-known
adenosine receptor The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a di ...
s found in the body, A1, A2A, A2B, and A3. The endogenous agonist for these receptors is
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9- glycosidic bond. Adenosine is one of the four nucleoside building ...
, which is a purine nucleoside that is important for processes such as energy transfer in the form of
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms ...
(ATP) and
adenosine monophosphate Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine; it is an ester of phosphoric acid and the nucleoside adenosine. As a substit ...
(AMP) and signal transduction in the form of
cyclic adenosine monophosphate Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
(cAMP). A2B and A3 receptors require concentrations of caffeine that do not occur at normal physiological levels or with normal levels of caffeine consumption in order to be antagonized, and will therefore not be considered as a possible mechanism for caffeine-induced anxiety. Caffeine acts as an antagonist of adenosine A1 and A2A receptors. Adenosine is a normal neuromodulator that activates adenosine g-protein coupled receptors. The actions of A1 and A2A receptors oppose each other but are both inhibited by caffeine due to its function as an antagonist. A2A receptors are coupled to Gs proteins which activate adenylate cyclase and some voltage gated Ca2+ channels. A2A receptors are located in
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% o ...
rich brain regions. A2A receptor mRNA was found in the same neurons as the dopamine receptor D2 within the
dorsal striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamat ...
,
nucleus accumbens The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for "nucleus adjacent to the septum") is a region in the basal forebrain rostral to the preoptic area of the hyp ...
and tuberculum olfactorium. A2A receptors are not found in neurons that express the dopamine receptor D1 receptors and
Substance P Substance P (SP) is an undecapeptide (a peptide composed of a chain of 11 amino acid residues) and a member of the tachykinin neuropeptide family. It is a neuropeptide, acting as a neurotransmitter and as a neuromodulator. Substance P and its clo ...
. Within the striatum, part of the basal ganglia, activation of A2A receptors by adenosine increases GABA release, an inhibitory neurotransmitter. When caffeine binds to the receptor, less inhibitory neurotransmitter is released, supporting caffeine's role as a central nervous system stimulant. A1 receptors are paired with the G-proteins of Gi-1, Gi-2, Gi-3, Go1, and Go2. The g-proteins of A1 receptors continue to inhibit adenylate cyclase, some voltage gated Ca2+ channels, and activate some K+ channels, and
phospholipase C Phospholipase C (PLC) is a class of membrane-associated enzymes that cleave phospholipids just before the phosphate group (see figure). It is most commonly taken to be synonymous with the human forms of this enzyme, which play an important role ...
and D. A1 receptors are primarily located in the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
, cerebral and
cerebellar cortex The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebe ...
, and particular
thalamic nuclei This traditional list does not accord strictly with human thalamic anatomy. Nuclear groups of the thalamus include: *anterior nuclear group ** anteroventral nucleus ** anterodorsal nucleus ** anteromedial nucleus **superficial ("lateral dorsal" ...
. Adenosine acts on A1 receptors to decrease opening of N-type Ca2+ channels in some hippocampal neurons, and therefore decrease the rate of firing since Ca2+ is necessary for neurotransmitter release. Caffeine's antagonistic action on the A1 receptor thus decreases the action of adenosine, allowing increased Ca2+ entry through N-type channels and higher rates of neurotransmitter release.


Other actions of caffeine

Though antagonism of adenosine receptors is the primary mechanism of caffeine, Introduction of the methylxanthine into the body also increases the rate of release and recycling of some
monoamine neurotransmitter Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin. All monoamines ar ...
s such as
noradrenaline Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad'', ...
and
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% o ...
. Caffeine also has an excitatory effect on mesocortical cholinergic neurons by acting as an antagonist on adenosine receptors that normally inhibit the neuron.


Genetics and variability of caffeine consumption

While many factors contribute to individual differences in a person's response to caffeine, such as environmental and demographic factors (i.e. age, drug use, circadian factors, etc.), genetics play an important role in individual variability. This inconsistency in responses to caffeine can take place either at the metabolic or at the drug-receptor level. The effects of genetic factors can occur either directly by changing acute or chronic reactions to the drug or indirectly by altering other psychological or physiological processes. Some of these processes include wakefulness, stimulation, and mood and cognition enhancement. Low doses can result in psychological effects of "mild euphoria, alertness, and enhanced cognitive performance"; higher doses produce physiological side effects of nausea, anxiety, trembling, and jitteriness. There are individuals who are prone to caffeine's anxiogenic effects whilst others are susceptible to its caffeine-induced sleep disturbances and
insomnia Insomnia, also known as sleeplessness, is a sleep disorder in which people have trouble sleeping. They may have difficulty falling asleep, or staying asleep as long as desired. Insomnia is typically followed by daytime sleepiness, low energy, ...
. Studies with twins have shown that genetics influence individual differences in response to caffeine. Homozygous twins have been found to react in more consistent ways to the caffeine than heterozygous twins.


Behavioral effects

Caffeine's widespread appeal is due primarily to its mild psychostimulant properties, which increase alertness and cognitive arousal and diminish fatigue. Caffeine also produces a wide range of other symptoms, including upregulation of the cardiovascular system, increased global cognitive processing, and improved physical functioning. Cardiovascular effects can range from increased heart rate and reactivity to severe cardiac arrhythmia. The cognitive effects of caffeine include increased performance in memory, attention, and text reading. The physical effects of caffeine include lowered sensations of pain, less perceived effort, and increased muscle strength and endurance. However, at doses above ~400 mg, both cognitive and physical performance begins to worsen and symptoms of anxiety increase. One study that explored ad lib caffeine consumption in 159 college students found that high consumers reported lower academic performance. The same study also concluded that moderate and high consumers combined reported significantly higher trait anxiety and depression scores when compared with abstainers. These anxiety symptoms include persisting insomnia, nervousness, and mood fluctuations. When undergoing stress, the body activates a system-wide response mechanism known as the HPA axis. This stress signal begins at the level of the hypothalamus in the brain and undergoes subsequent amplifications throughout the body. This system elevates levels of stress hormones in the blood, which results in the body shutting down secondary bodily processes and increasing alertness to better prepare for response to the perceived threat. Studies show that activation of this pathway is correlated with anxiety-like behaviors, including panic, post-traumatic stress, and generalized anxiety disorders, as well as depression. Rodent studies show that caffeine consumption in adolescence results in dysregulation of HPA axis function as well as central nervous system response, which impairs the body's response to stressful stimuli. In cases of prolonged consumption of excess amounts of caffeine, studies show that individuals exhibit a reduced response to HPA axis activation by the hormone ACTH and a generalized increase in basal levels of stress hormone corticosterone. Researchers concluded that the sensitivity of adrenal glands to ACTH is diminished by caffeine consumption. People diagnosed with panic disorder show less HPA activity following stressful stimuli than their healthy control counterparts.


Susceptible populations

Caffeine has varying effects on anxiety across given populations. The populations most susceptible to caffeine-induced anxiety disorder include those already diagnosed with an anxiety disorder and adolescents. Adolescents, particularly, are at increased risk for developing anxiety disorders and anxiety-related symptoms. While few human studies have been done to investigate this connection, many rodent studies show a correlation between caffeine consumption in adolescence and increased anxiety. These studies showed that in adolescent rodents exposed to caffeine, functioning of serotonin systems was affected, leading to increased anxiety; anxiety-related behaviors were higher than in adult rats exposed to the same amount of caffeine; and reward seeking behaviors as well as mood fluctuations were increased as the rodents matured.


Long-term health effects

When consumed in moderation, caffeine can have many beneficial effects. However, over the course of several years, chronic caffeine consumption can produce various long-term health deficits in individuals. Among these, rodent studies have suggested caffeine intake may permanently alter the brain's excitability. As previously stated, long-term effects are most often seen in adolescents who regularly consume excess amounts of caffeine. This can affect their neuroendocrine functions and increase the risk of anxiety-disorder development.


Treatment

For individuals being treated with
benzodiazepines Benzodiazepines (BZD, BDZ, BZs), sometimes called "benzos", are a class of depressant drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. They are prescribed to treat conditions such as anxiety disorders, ...
such as alprazolam (Xanax) for
anxiety disorder Anxiety disorders are a cluster of mental disorders characterized by significant and uncontrollable feelings of anxiety and fear such that a person's social, occupational, and personal function are significantly impaired. Anxiety may cause phy ...
s, even small amounts of caffeine may have negative effects on treatment. Caffeine is able to negate the effects of benzodiazepines which can lead to heightened levels of anxiety and even panic attacks. Studies have linked caffeine intake to increased rates of
cytotoxicity Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating c ...
and cell death by
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated diges ...
associated with benzodiazepine use. However, this phenomenon (thought to be mediated via TSPO) is also present with benzodiazepine use alone. The clinical significance of caffeine-benzodiazepine induced cytotoxicity in humans is unclear and has not been shown to be harmful. Although benzodiazepines are effective at managing acute caffeine-induced anxiety symptoms, avoiding caffeine is generally recommended rather than increasing benzodiazepine intake. Treatments for caffeine-induced anxiety disorder tend to focus on abstinence from or a reduction of caffeine intake and
behavioral therapy Behaviour therapy or behavioural psychotherapy is a broad term referring to clinical psychotherapy that uses techniques derived from behaviourism and/or cognitive psychology. It looks at specific, learned behaviours and how the environment, or ...
. Some doctors may recommend a continuance of caffeine consumption but with the provision that the patient actively takes note of physiological changes that happen after caffeine intake. The goal of this approach is to help patients better understand the effects of caffeine on the body and to distinguish threatening symptoms from normal reactions.


References

{{Psychoactive substance use Anxiety disorders Caffeine