HOME
The Info List - Bromide


--- Advertisement ---



Chloride Iodide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

N verify (what is YN ?)

Infobox references

A bromide is a chemical compound containing a bromide ion or ligand. This is a bromine atom with an ionic charge of −1 (Br−); for example, in caesium bromide, caesium cations (Cs+) are electrically attracted to bromide anions (Br−) to form the electrically neutral ionic compound CsBr. The term "bromide" can also refer to a bromine atom with an oxidation number of −1 in covalent compounds such as sulfur dibromide (SBr2).

Contents

1 Natural occurrence 2 Chemistry 3 Medical uses 4 In biology 5 References

Natural occurrence[edit] Bromide is present in typical seawater (35 PSU) with a concentration of around 65 mg/L, which is around 0.2% of all dissolved salts. Seafoods and deep sea plants generally have high levels of bromide, while foods derived from land have variable amounts. Bromargyryte - natural, crystalline silver bromide - is the most common bromide mineral currently known. It is still very rare. Beside silver, bromine is sometimes found in minerals combined with mercury and copper.[3] Chemistry[edit] One can test for a bromide ion by adding excess dilute HNO3 followed by dilute aqueous AgNO3 solution. The formation of creamy silver bromide precipitate confirms the existence of bromides. Medical uses[edit] Main article: Potassium bromide Bromide compounds, especially potassium bromide, were frequently used as sedatives in the 19th and early 20th century. Their use in over-the-counter sedatives and headache remedies (such as Bromo-Seltzer) in the United States extended to 1975, when bromides were withdrawn as ingredients, due to chronic toxicity.[4] This use gave the word "bromide" its colloquial connotation of a boring cliché, a bit of conventional wisdom overused as a calming phrase, or verbal sedative.[5] The bromide ion is antiepileptic, and bromide salts are still used as such, particularly in veterinary medicine. Bromide ion is excreted by the kidneys. The half-life of bromide in the human body (12 days) is long compared with many pharmaceuticals, making dosing difficult to adjust (a new dose may require several months to reach equilibrium). Bromide ion concentrations in the cerebrospinal fluid are about 30% of those in blood, and are strongly influenced by the body's chloride intake and metabolism.[6] Since bromide is still used in veterinary medicine (particularly to treat seizures in dogs) in the United States, veterinary diagnostic labs can routinely measure blood bromide levels. However, this is not a conventional test in human medicine in the U.S., since there are no FDA-approved uses for bromide, and (as noted) it is no longer available in over-the-counter sedatives. Therapeutic bromide levels are measured in European countries like Germany, where bromide is still used therapeutically in human epilepsy. Chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption. See potassium bromide. Lithium bromide
Lithium bromide
was used as a sedative beginning in the early 1900s, but it fell into disfavor in the 1940s, possibly due to the rising popularity of safer and more efficient sedatives (specifically, barbiturates) and when some heart patients died after using a salt substitute (see lithium chloride).[7] Like lithium carbonate and lithium chloride it was used as treatment for bipolar disorder. It has been said that during World War I, British soldiers were given bromide to curb their sexual urges,[8] although this is not well supported by documentation, and has been disputed as an urban myth, as the sedative effects of bromide would have hampered military performance. Lord Dunsany
Lord Dunsany
mentions a soldier being given bromide as a sedative for nervous exhaustion and overwork in his play Fame and the Poet (1919).[9] There are more substantiated reports that bromide was used in the food served at some concentration camps during the Holocaust. This was apparently done in an effort to both chemically restrain the interned and prevent menstruation in females.[10] In biology[edit] According to one study, bromine (as bromide) is an essential cofactor in the peroxidasin catalysis of sulfilimine crosslinks in collagen IV. This post-translational modification occurs in all animals, and bromine is an essential trace element for humans.[11] Bromide is needed by eosinophils (white blood cells of the granulocyte class, specialized for dealing with multi-cellular parasites), which use it to generate antiparasitic brominating compounds such as hypobromite, by the action of eosinophil peroxidase, a haloperoxidase enzyme which is able to use chloride, but preferentially uses bromide when available.[12] Other than its role in collagen IV production and its facultative use in eosinophils by the body, bromide is not known in other cases necessary for animal life, as its functions may generally be replaced (though in some cases not as well) by chloride. Land plants do not use bromide. Bromide salts are also sometimes used in hot tubs and spas as mild germicidal agents, using the action of an added oxidizing agent to generate in situ hypobromite, in a similar fashion to the peroxidase in eosinophils. Bromide is perhaps a minor necessary nutrient for collagen IV-producing animals in the sea. However, a few sea animals, such as Murex
Murex
snails, use bromide to make organic compounds. Bromide ion is also heavily concentrated by some species of ocean algae, which construct methyl bromide and a great number of bromoorganic compounds with it, using the unusual enzymes called vanadium bromoperoxidases to do these reactions. The average concentration of bromide in human blood in Queensland, Australia is 5.3±1.4 mg/L and varies with age and gender.[13] Much higher levels may indicate exposure to brominated chemicals (e.g. methyl bromide). However, since bromide occurs in relatively high concentration in seawater and many types of seafood, bromide concentrations in the blood are heavily influenced by seafood contributions to the diet. References[edit]

^ " Bromide PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.  ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. ISBN 0-618-94690-X.  ^ http://www.mindat.org ^ Adams, Samuel Hopkins (1905). The Great American fraud . ^ "the definition of bromide". Dictionary.com. Retrieved 21 December 2016.  ^ Goodman, L. S. and Gilman, A. (eds.) (1970) "Hypnotics and Sedatives", p. 121 in Chapter 10 in The Biological Basis of Therapeutics, Fourth Edition, The MacMillan Co., London. ^ Bipolar disorder. webmd.com ^ Tanaka, Yuki (2002) Japan's Comfort Women: Sexual slavery and prostitution during World War II and the US Occupation, Routledge, p. 175. ISBN 0415194008. ^ Lord Dunsany
Lord Dunsany
(August 1919). "Fame and the Poet". The Atlantic Monthly: 175–183.  ^ Jackson, “The Coming of Age” in Women and the Holocaust, eds Rittter & Roth, p. 80. ^ McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014). " Bromine
Bromine
Is an Essential Trace Element for Assembly of Collagen
Collagen
IV Scaffolds in Tissue Development and Architecture". Cell. 157 (6): 1380–92. doi:10.1016/j.cell.2014.05.009. PMC 4144415 . PMID 24906154.  ^ Mayeno, AN; Curran, AJ; Roberts, RL; Foote, CS (1989). "Eosinophils preferentially use bromide to generate halogenating agents". The Journal of Biological Chemistry. 264 (10): 5660–8. PMID 2538427.  ^ Olszowy, HA; Rossiter, J; Hegarty, J; Geoghegan, P (1998). "Background levels of bromide in human blood". Journal of analytical toxicology. 22 (3): 225–30. doi:10.1093/jat/22.3.225. PMID 9602940. 

v t e

Inorganic bromides

LiBr NaBr KBr RbBr CsBr BeBr2 MgBr2 CaBr2 SrBr2 BaBr2 RaBr2 ScBr3 YBr3 LaBr3 CeBr3 PrBr3 NdBr3 SmBr2 SmBr3 EuBr2 EuBr3 GdBr3 TbBr3 HoBr3 ErBr3 TmBr3 YbBr2 YbBr3 LuBr3 AcBr3 ThBr4 PaBr4 PaBr5 UBr3 UBr4 UBr5 NpBr3 NpBr4 PuBr3 AmBr2 AmBr3 CmBr3 BkBr3 CfBr2 CfBr3 TiBr2 TiBr3 TiBr4 ZrBr3 ZrBr4 HfBr3 HfBr4 VBr2 VBr3 VBr4 NbBr3 NbBr4 NbBr5 TaBr3 TaBr4 TaBr5 CrBr2 CrBr3 MoBr2 MoBr3 MoBr4 WBr2 WBr3 WBr4 WBr5 WBr6 MnBr2 (ReBr3)3 ReBr4 ReBr5 FeBr2 FeBr3 RuBr2 RuBr3 OsBr3 OsBr4 CoBr2 RhBr3 IrBr3 NiBr2 PdBr2 PtBr2 PtBr3 PtBr4 CuBr CuBr2 AgBr AuBr3 ZnBr2 CdBr2 Hg2Br2 HgBr2 BBr3 AlBr3 GaBr GaBr3 InBr InBr3 TlBr TlBr3 CBr4 SiBr4 GeBr2 GeBr4 SnBr2 SnBr4 PbBr2 NBr3 PBr3 PBr5 AsBr3 SbBr3 BiBr3 S2Br2 Se2Br2 SeBr2 SeBr4 Te2Br TeBr2 TeBr4 PoBr2 PoBr4 IBr

v t e

GABAA receptor positive modulators

Alcohols

Brometone Butanol Chloralodol Chlorobutanol
Chlorobutanol
(cloretone) Ethanol (alcohol) (alcoholic drink) Ethchlorvynol Isobutanol Isopropanol Menthol Methanol Methylpentynol Pentanol Petrichloral Propanol tert-Butanol (2M2P) tert-Pentanol (2M2B) Tribromoethanol Trichloroethanol Triclofos Trifluoroethanol

Barbiturates

(-)-DMBB Allobarbital Alphenal Amobarbital Aprobarbital Barbexaclone Barbital Benzobarbital Benzylbutylbarbiturate Brallobarbital Brophebarbital Butabarbital/Secbutabarbital Butalbital Buthalital Butobarbital Butallylonal Carbubarb Crotylbarbital Cyclobarbital Cyclopentobarbital Difebarbamate Enallylpropymal Ethallobarbital Eterobarb Febarbamate Heptabarb Heptobarbital Hexethal Hexobarbital Metharbital Methitural Methohexital Methylphenobarbital Narcobarbital Nealbarbital Pentobarbital Phenallymal Phenobarbital Phetharbital Primidone Probarbital Propallylonal Propylbarbital Proxibarbital Reposal Secobarbital Sigmodal Spirobarbital Talbutal Tetrabamate Tetrabarbital Thialbarbital Thiamylal Thiobarbital Thiobutabarbital Thiopental Thiotetrabarbital Valofane Vinbarbital Vinylbital

Benzodiazepines

2-Oxoquazepam 3-Hydroxyphenazepam Adinazolam Alprazolam Arfendazam Avizafone Bentazepam Bretazenil Bromazepam Brotizolam Camazepam Carburazepam Chlordiazepoxide Ciclotizolam Cinazepam Cinolazepam Clazolam Climazolam Clobazam Clonazepam Clonazolam Cloniprazepam Clorazepate Clotiazepam Cloxazolam CP-1414S Cyprazepam Delorazepam Demoxepam Diazepam Diclazepam Doxefazepam Elfazepam Estazolam Ethyl carfluzepate Ethyl dirazepate Ethyl loflazepate Etizolam EVT-201 FG-8205 Fletazepam Flubromazepam Flubromazolam Fludiazepam Flunitrazepam Flunitrazolam Flurazepam Flutazolam Flutemazepam Flutoprazepam Fosazepam Gidazepam Halazepam Haloxazolam Iclazepam Imidazenil Irazepine Ketazolam Lofendazam Lopirazepam Loprazolam Lorazepam Lormetazepam Meclonazepam Medazepam Menitrazepam Metaclazepam Mexazolam Midazolam Motrazepam N-Desalkylflurazepam Nifoxipam Nimetazepam Nitrazepam Nitrazepate Nitrazolam Nordazepam Nortetrazepam Oxazepam Oxazolam Phenazepam Pinazepam Pivoxazepam Prazepam Premazepam Proflazepam Pyrazolam QH-II-66 Quazepam Reclazepam Remimazolam Rilmazafone Ripazepam Ro48-6791 Ro48-8684 SH-053-R-CH3-2′F Sulazepam Temazepam Tetrazepam Tolufazepam Triazolam Triflubazam Triflunordazepam
Triflunordazepam
(Ro5-2904) Tuclazepam Uldazepam Zapizolam Zolazepam Zomebazam

Carbamates

Carisbamate Carisoprodol Clocental Cyclarbamate Difebarbamate Emylcamate Ethinamate Febarbamate Felbamate Hexapropymate Lorbamate Mebutamate Meprobamate Nisobamate Pentabamate Phenprobamate Procymate Styramate Tetrabamate Tybamate

Flavonoids

6-Methylapigenin Ampelopsin
Ampelopsin
(dihydromyricetin) Apigenin Baicalein Baicalin Catechin EGC EGCG Hispidulin Linarin Luteolin Rc-OMe Skullcap constituents (e.g., baicalin) Wogonin

Imidazoles

Etomidate Metomidate Propoxate

Kava
Kava
constituents

10-Methoxyyangonin 11-Methoxyyangonin 11-Hydroxyyangonin Desmethoxyyangonin 11-Methoxy-12-hydroxydehydrokavain 7,8-Dihydroyangonin Kavain 5-Hydroxykavain 5,6-Dihydroyangonin 7,8-Dihydrokavain 5,6,7,8-Tetrahydroyangonin 5,6-Dehydromethysticin Methysticin 7,8-Dihydromethysticin Yangonin

Monoureides

Acecarbromal Apronal
Apronal
(apronalide) Bromisoval Carbromal Capuride Ectylurea

Neuroactive steroids

Acebrochol Allopregnanolone
Allopregnanolone
(brexanolone) Alfadolone Alfaxalone 3α-Androstanediol Androstenol Androsterone Certain anabolic-androgenic steroids Cholesterol DHDOC 3α-DHP 5α-DHP 5β-DHP DHT Etiocholanolone Ganaxolone Hydroxydione Minaxolone ORG-20599 ORG-21465 P1-185 Pregnanolone
Pregnanolone
(eltanolone) Progesterone Renanolone SAGE-105 SAGE-217 SAGE-324 SAGE-516 SAGE-689 SAGE-872 Testosterone THDOC

Nonbenzodiazepines

β-Carbolines: Abecarnil Gedocarnil Harmane SL-651,498 ZK-93423

Cyclopyrrolones: Eszopiclone Pagoclone Pazinaclone Suproclone Suriclone Zopiclone

Imidazopyridines: Alpidem DS-1 Necopidem Saripidem Zolpidem

Pyrazolopyrimidines: Divaplon Fasiplon Indiplon Lorediplon Ocinaplon Panadiplon Taniplon Zaleplon

Others: Adipiplon CGS-8216 CGS-9896 CGS-13767 CGS-20625 CL-218,872 CP-615,003 CTP-354 ELB-139 GBLD-345 Imepitoin JM-1232 L-838,417 Lirequinil
Lirequinil
(Ro41-3696) NS-2664 NS-2710 NS-11394 Pipequaline ROD-188 RWJ-51204 SB-205,384 SX-3228 TGSC01AA TP-003 TPA-023 TP-13 U-89843A U-90042 Viqualine Y-23684

Phenols

Fospropofol Propofol Thymol

Piperidinediones

Glutethimide Methyprylon Piperidione Pyrithyldione

Pyrazolopyridines

Cartazolate Etazolate ICI-190,622 Tracazolate

Quinazolinones

Afloqualone Cloroqualone Diproqualone Etaqualone Mebroqualone Mecloqualone Methaqualone Methylmethaqualone Nitromethaqualone SL-164

Volatiles/gases

Acetone Acetophenone Acetylglycinamide chloral hydrate Aliflurane Benzene Butane Butylene Centalun Chloral Chloral
Chloral
betaine Chloral
Chloral
hydrate Chloroform Cryofluorane Desflurane Dichloralphenazone Dichloromethane Diethyl ether Enflurane Ethyl chloride Ethylene Fluroxene Gasoline Halopropane Halothane Isoflurane Kerosine Methoxyflurane Methoxypropane Nitric oxide Nitrogen Nitrous oxide Norflurane Paraldehyde Propane Propylene Roflurane Sevoflurane Synthane Teflurane Toluene Trichloroethane (methyl chloroform) Trichloroethylene Vinyl ether

Others/unsorted

3-Hydroxybutanal α-EMTBL AA-29504 Avermectins (e.g., ivermectin) Bromide compounds (e.g., lithium bromide, potassium bromide, sodium bromide) Carbamazepine Chloralose Chlormezanone Clomethiazole DEABL Dihydroergolines (e.g., dihydroergocryptine, dihydroergosine, dihydroergotamine, ergoloid (dihydroergotoxine)) DS2 Efavirenz Etazepine Etifoxine Fenamates (e.g., flufenamic acid, mefenamic acid, niflumic acid, tolfenamic acid) Fluoxetine Flupirtine Hopantenic acid Lanthanum Lavender oil Lignans (e.g., 4-O-methylhonokiol, honokiol, magnolol, obovatol) Loreclezole Menthyl isovalerate
Menthyl isovalerate
(validolum) Monastrol Niacin Nicotinamide
Nicotinamide
(niacinamide) Org 25,435 Phenytoin Propanidid Retigabine
Retigabine
(ezogabine) Safranal Seproxetine Stiripentol Sulfonylalkanes (e.g., sulfonmethane (sulfonal), tetronal, trional) Terpenoids (e.g., borneol) Topiramate Valerian constituents (e.g., isovaleric acid, isovaleramide, valerenic acid, valerenol)

Unsorted benzodiazepine site positive modulators: α-Pinene MRK-409 (MK-0343) TCS-1105 TCS-1205

See also: Receptor/signaling modulators • GABA receptor modulators • GABA metabolism/tr

.