Bose–Einstein condensation of quasiparticles
   HOME

TheInfoList



OR:

Bose–Einstein condensation Bose–Einstein may refer to: * Bose–Einstein condensate ** Bose–Einstein condensation (network theory) * Bose–Einstein correlations * Bose–Einstein statistics In quantum statistics, Bose–Einstein statistics (B–E statistics) describe ...
can occur in
quasiparticles In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exa ...
, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.


Properties

BECs form when low temperatures cause nearly all particles to occupy the lowest quantum state. Condensation of quasiparticles occurs in ultracold gases and materials. The lower masses of material quasiparticles relative to atoms lead to higher BEC temperatures. An ideal Bose gas has a phase transitions when inter-particle spacing approaches the thermal De-Broglie wavelength: k_B T =~ \hbar^2 n^/M. The critical concentration is then N \propto (T/2 \pi)^3 u^ P / v \hbar^3, leading to a critical temperature: T_c < 32\pi^3 \hbar^6 V^2u_0P^2. The particles obey the Bose–Einstein distribution and all occupy the ground state: The Bose gas can be considered in a harmonic trap, V(r) = M \omega^2 /2, with the ground state occupancy fraction as a function of temperature: : f(0) = \frac N = 1 - \left( \frac T \right)^3 This can be achieved by cooling and magnetic or optical control of the system. Spectroscopy can detect shifts in peaks indicating thermodynamic phases with condensation. Quasiparticle BEC can be superfluids. Signs of such states include spatial and temporal coherence and polarization changes. Observation for excitons in solids was seen in 2005 and for magnons in materials and polaritons in microcavities in 2006. Graphene is another important solid state system for studies of condensed matter including quasi particles; It's a 2D electron gas, similar to other thin films.


Excitons

Excitons An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
are electron-hole pairs. Similar to
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consis ...
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
at the \lambda-point (2.17K); a condensate was proposed by Böer et al. in 1961. Experimental phenomenon were predicted leading to various pulsed laser searches that failed to produce evidence. Signs were first seen by Fuzukawa et al. in 1990, but definite detection was published later in the 2000s. Condensed excitons are a
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
and will not interact with phonons. While the normal exciton absorption is broadened by phonons, in the superfluid absorption degenerates to a line.


Theory

Excitons results from photons exciting electrons creating holes, which are then attracted and can form bound states. The 1s paraexciton and orthoexciton are possible. The 1s triplet spin state, 12.1meV below the degenerate orthoexciton states(lifetime ~ns), is decoupled and has a long lifetime to an optical decay. Dilute gas densities (n~1014cm−3) are possible, but paraexcition generation scales poorly, so significant heating occurs in creating high densities(1017cm−3) preventing BECs. Assuming a thermodynamic phase occurs when separation reaches the
de Broglie wavelength Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave ...
(\lambda_) gives: : Where, n is the exciton density, effective mass(of electron mass order) m_\text, and \hbar,k are the Planck and Boltzmann constants. Density depends on the optical generation g and lifetime as: n = g\tau. Tuned lasers create excitons which efficiently self-annihilate at a rate: dn/dt = -an^2, preventing a high density paraexciton BEC. A potential well limits diffusion, damps exciton decay, and lowers the critical number, yielding an improved critical temperature versus the ''T''3/2 scaling of free particles: : N_c = \zeta(3) \left( \frac \right)^3


Experiments

In an ultrapure Cu2O crystal: \tau = 10s. For an achievable T = 0.01K, a manageable optical pumping rate of 105/s should produce a condensate. More detailed calculations by J. Keldysh and later by D. Snoke et al. started a large number of experimental searches into the 1990s that failed to detect signs. Pulse methods led to overheating, preventing condensate states. Helium cooling allows mili-kelvin setups and continuous wave optics improves on pulsed searches. Relaxation explosion of a condensate at lattice temperature 354 mK was seen by Yoshioka et al. in 2011. Recent experiments by Stolz et al. using a potential trap have given more evidence at ultralow temperature 37 mK. In a parabolic trap with exciton temperature 200 mK and lifetime broadened to 650ns, the dependence of luminescence on laser intensity has a kink which indicates condensation. The theory of a Bose gas is extended to a mean field interacting gas by a Bogoliubov approach to predict the exciton spectrum; The kink is considered a sign of transition to BEC. Signs were seen for a dense gas BEC in a GaAs quantum well.


Magnons

Magnon A magnon is a quasiparticle, a collective excitation of the electrons' spin structure in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of ...
s, electron spin waves, can be controlled by a magnetic field. Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible. Magnetic ordering is the analog of superfluidity. The condensate appears as the emission of monochromatic microwaves, which are tunable with the applied magnetic field. In 1999 condensation was demonstrated in antiferromagnetic Tl Cu Cl3, at temperatures as large as 14 K. The high transition temperature (relative to atomic gases) is due to the small mass (near an electron) and greater density. In 2006, condensation in a ferromagnetic Yttrium-iron-garnet thin film was seen even at room temperature with optical pumping. Condensation was reported in gadolinium in 2011. Magnon BECs have been considered as
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s for quantum computing.


Polaritons

Polaritons In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also ...
, caused by light coupling to excitons, occur in optical cavities and condensation of exciton-polaritons in an optical microcavity was first published in Nature in 2006. Semiconductor cavity polariton gases transition to ground state occupation at 19K. Bogoliubov excitations were seen polariton BECs in 2008. The signatures of BEC were observed at room temperature for the first time in 2013, in a large exciton energy semiconductor device and in a polymer microcavity.


Other quasiparticles

Roton In theoretical physics, a roton is an elementary excitation, or quasiparticle, seen in superfluid helium-4 and Bose–Einstein condensates with long-range dipolar interactions or spin-orbit coupling. The dispersion relation of elementary excita ...
s, an elementary excitation in superfluid 4He introduced by Landau, were discussed by Feynman and others. Rotons condense at low temperature. Experiments have been proposed and the expected spectrum has been studied, but roton condensates have not been detected. Phonons were first observed in a condensate in 2004 by ultrashort pulses in a bismuth crystal at 7K.


Important publications

* * * * *


See also

* Bose-Einstein condensation of polaritons *
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...


References

{{DEFAULTSORT:Bose-Einstein condensation of quasiparticles Bose–Einstein condensates Quasiparticles