Bose–Einstein condensation of polaritons
   HOME

TheInfoList



OR:

Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
, but through a different mechanism. A continuous transition from
polariton In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also ...
condensation to lasing can be made similar to that of the crossover from a
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
to a BCS state in the context of Fermi gases. Polariton condensation is sometimes called “lasing without inversion”.


Overview

Polaritons are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
ic
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exa ...
s which can be thought of as dressed photons. In an
optical cavity An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and prov ...
, photons have an effective mass, and when the optical
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
in a cavity is brought near in energy to an electronic resonance (typically an
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. ...
) in a medium inside the cavity, the photons become strongly interacting, and repel each other. They therefore act like atoms which can approach equilibrium due to their collisions with each other, and can undergo Bose-Einstein condensation (BEC) at high density or low temperature. The Bose condensate of polaritons then emits coherent light like a laser. Because the mechanism for the onset of coherence is the interactions between the polaritons, and not the optical gain that comes from
inversion Inversion or inversions may refer to: Arts * , a French gay magazine (1924/1925) * ''Inversion'' (artwork), a 2005 temporary sculpture in Houston, Texas * Inversion (music), a term with various meanings in music theory and musical set theory * ...
, the threshold density can be quite low.


History

The theory of polariton BEC was first proposed by Atac Imamoglu and coauthors including Yoshihisa Yamamoto. These authors claimed observation of this effect in a subsequent paper, but this was eventually shown to be standard lasing. In later work in collaboration with the research group of Jacqueline Bloch, the structure was redesigned to include several
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy ...
s inside the cavity to prevent saturation of the exciton resonance, and in 2002 evidence for nonequilibrium condensation was reported which included photon-photon correlations consistent with spontaneous coherence. Later experimental groups have used essentially the same design. In 2006, the group of Benoit Deveaud and coauthors reported the first widely accepted claim of nonequilibrium Bose–Einstein condensation of polaritons based on measurement of the momentum distribution of the polaritons. Although the system was not in equilibrium, a clear peak in the ground state of the system was seen, a canonical prediction of BEC. Both of these experiments created a polariton gas in an uncontrolled free expansion. In 2007, the experimental group of David Snoke demonstrated nonequilibrium Bose–Einstein condensation of polaritons in a trap, similar to the way atoms are confined in traps for Bose–Einstein condensation experiments. The observation of polariton condensation in a trap was significant because the polaritons were displaced from the laser excitation spot, so that the effect could not be attributed to a simple nonlinear effect of the laser light. Jaqueline Bloch and coworkers observed polariton condensation in 2009, after which many other experimentalists reproduced the effect (for reviews see the bibliography). Evidence for polariton
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
was reported in by Alberto Amo and coworkers, based on the suppressed scattering of the polaritons during their motion. This effect has been seen more recently at room temperature, which is the first evidence of room temperature
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
, albeit in a highly nonequilibrium system.


Equilibrium polariton condensation

The first clear demonstration of Bose–Einstein condensation of polaritons in equilibrium was reported by a collaboration of David Snoke, Keith Nelson, and coworkers, using high quality structures fabricated by Loren Pfeiffer and Ken West at Princeton. Prior to this result, polariton condensates were always observed out of equilibrium. All of the above studies used
optical pumping Optical pumping is a process in which light is used to raise (or "pump") electrons from a lower energy level in an atom or molecule to a higher one. It is commonly used in laser construction to pump the active laser medium so as to achieve pop ...
to create the condensate. Electrical injection, which enables a polariton laser which could be a practical device, was shown in 2013 by two groups.


Nonequilibrium condensation

Polariton condensates are an example, and the most well studied example, of Bose-Einstein condensation of quasiparticles. Because most of the experimental work on polariton condensates used structures with very short polariton lifetime, a large body of theory has addressed the properties of nonequilibrium condensation and superfluidity. In particular, Jonathan Keeling and Iacopo Carusotto and C. Ciuti have shown that although a condensate with dissipation is not a “true” superfluid, it still has a critical velocity for onset of superfluid effects.


See also

* Bose-Einstein condensation of quasiparticles


References


Further reading

* Universal Themes of Bose-Einstein Condensation, published by Cambridge University Press (2017). , * John Robert Schrieffer, ''Theory of Superconductivity'', (1964), * ''Bose–Einstein Condensation'', published by Cambridge University Press (1996). ; {{DEFAULTSORT:Bose-Einstein condensation of polaritons Bose–Einstein condensates Quasiparticles