HOME
The Info List - Blue Cheese


--- Advertisement ---



Blue
Blue
cheese is a general classification of cheeses that have had cultures of the mold Penicillium
Penicillium
added so that the final product is spotted or veined throughout with blue, or blue-grey mold and carries a distinct smell, either from that or various specially cultivated bacteria. Some blue cheeses are injected with spores before the curds form, and others have spores mixed in with the curds after they form. Blue
Blue
cheeses are typically aged in a temperature-controlled environment such as a cave. Blue
Blue
cheese can be eaten by itself or can be spread, crumbled or melted into or over foods. The characteristic flavor of blue cheeses tends to be sharp and salty. The smell of this food is due both to the mold and to types of bacteria encouraged to grow on the cheese: for example, the bacterium Brevibacterium linens
Brevibacterium linens
is responsible for the smell of many blue cheeses,[1] as well as foot odor and other human body odors.[2]

Contents

1 History 2 Nutritional information 3 Production

3.1 Creation 3.2 European Union

4 Physical-chemical Properties

4.1 Structure 4.2 Mold
Mold
growth

5 See also 6 References 7 External links

History[edit] Blue
Blue
cheese is believed to have been discovered by accident when cheeses were stored in natural temperatures and moisture-controlled caves, which happen to be favorable environments for many varieties of harmless mold. It was moist in the cave so the mold would form. According to legend, Roquefort
Roquefort
was discovered when a youth, eating a lunch of bread and ewes' milk cheese, abandoned his meal in a nearby cave after seeing a beautiful girl in the distance. When he returned months later, the mold ( Penicillium
Penicillium
roqueforti) had transformed his cheese into Roquefort.[3][4] Gorgonzola
Gorgonzola
is one of the oldest known blue cheeses, having been created around 879 AD, though it is said that it did not actually contain blue veins until around the 11th century.[5][6] Stilton is a relatively new addition becoming popular sometime in the early 1700s.[7] Many varieties of blue cheese that originated subsequently, such as the 20th century Danablu
Danablu
and Cambozola, were an attempt to fill the demand for Roquefort-style cheeses that were prohibitive due to either cost or politics.[citation needed] Nutritional information[edit] In the United States of America, 100 g of generic[further explanation needed] blue cheese contains the following nutritional values according to the United States Department of Agriculture :[8]

Calories: 353 Fat: 28.74 grams Carbohydrates: 2.34 grams Fiber: 0 grams Protein: 21.40 grams Vitamin B12: 1.15 mg (50% of recommended daily intake)

Production[edit] Creation[edit]

Cambozola, a German variety of blue cheese

Similarly to other varieties of cheese, the process of making blue cheese consists of six standard steps, as well as further additions that give this blue-veined cheese its unique properties. The first step is acidification where a starter culture is added to milk in order to change lactose to lactic acid, thus changing the acidity of the milk and turning it from liquid to solid. The next step is coagulation, where rennet, a mixture of rennin and other material found in the stomach lining of a calf is added to solidify the milk further. Following this, thick curds are cut typically with a knife to encourage the release of liquid or whey. The smaller the curds are cut, the thicker and harder the resulting cheese will become. Salt is then added to provide flavor as well as to act as a preservative so the cheese does not spoil. Next, the cheese is given its form and further pressed with weights if necessary to expel any excess liquid. The final step is ripening the cheese by aging it. The temperature and the level of humidity in the room where the cheese is aging is monitored to ensure the cheese does not spoil or lose its optimal flavor and texture.[9] Blue
Blue
cheese undergoes the aforementioned steps with an added twist that gives it its unique look of blue streaks found all throughout. The blue veins are a result of adding the molds Penicillium
Penicillium
roqueforti and Penicillium
Penicillium
glaucum to the cheesemaking process, often introduced after the curds have been ladled into containers in order to be drained and formed into a full wheel of cheese. Although Penicillium roqueforti and Penicillium
Penicillium
glaucum are found naturally, cheese producers nowadays use commercially manufactured Penicillium roqueforti culture that have been freeze-dried, a form of dehydration where water is evaporated from the frozen state without the transition through the liquid state, to retain their value and are activated with the addition of water. After the addition of the molds to the cheese, the next significant step is needling, which is when the wheels of blue cheese are pierced to create small openings to allow the air to enter and feed the mold cultures, thus encouraging the formation of blue veins.[9] The distinctive flavor and aroma of blue cheese arises from methyl ketones (including 2-pentanone, 2-heptanone, and 2-nonanone) which are a metabolic product of Penicillium
Penicillium
roqueforti.[10] These compounds are not formed in other types of cheese fermented by bacterial acidification alone. European Union[edit] In the European Union, many blue cheeses, such as Cabrales, Danablu, Gorgonzola, Roquefort
Roquefort
and Blue
Blue
Stilton, carry a protected designation of origin, meaning they can bear the name only if they have been made in a particular region. Similarly, individual countries have protections of their own such as France's Appellation d'Origine Contrôlée and Italy's Denominazione di Origine Protetta. Blue cheeses with no protected origin name are designated simply "blue cheese". Physical-chemical Properties[edit] Structure[edit] The main structure of the blue cheese comes from the aggregation of the casein. In milk, casein does not aggregate because of the outer layer of the particle, called the “hairy layer.” The hairy layer consists of κ-casein, which are strings of polypeptides that extend outward from the center of the casein micelle.[11] The entanglement of the hairy layer between casein micelles decreases the entropy of the system because it constrains the micelles, preventing them from spreading out. Curds
Curds
form, however, due to the function that the enzyme, rennet, plays in removing the hairy layer in the casein micelle. Rennet is an enzyme that cleaves the κ-casein off the casein micelle, thus removing the strain that occurs when the hairy layer entangles. The casein micelles are then able to aggregate together when they collide with each other, forming the curds that can then be made into blue cheese. Mold
Mold
growth[edit] Penicillium
Penicillium
roqueforti and Penicillium
Penicillium
glaucum are both molds that require the presence of oxygen to grow. Therefore, initial fermentation of the cheese is done by lactic acid bacteria. The lactic acid bacteria, however, are killed by the low pH and the secondary fermenters, Penicillium
Penicillium
roqueforti, take over and break the lactic acid down, maintaining a pH in the aged cheese above 6.0.[12] As the pH rises again from the loss of lactic acid, the enzymes in the molds responsible for lipolysis and proteolysis are more active and can continue to ferment the cheese because they are optimal at a pH of 6.0.[13] Penicillium
Penicillium
roqueforti creates the characteristic blue veins in blue cheese after the aged curds have been pierced, forming air tunnels in the cheese. When given oxygen, the mold is able to grow along the surface of the curd-air interface.[14] In pressing the cheese, the curds are not tightly packed in order to allow for air gaps between them. After piercing, the mold can also grow in between the curds. See also[edit]

List of blue cheeses

References[edit]

^ Deetae P; Bonnarme P; Spinnler HE; Helinck S (October 2007). "Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses". Appl. Microbiol. Biotechnol. 76 (5): 1161–71. doi:10.1007/s00253-007-1095-5. PMID 17701035.  ^ Dixon, Bernard (1996-04-27). "Cheese, toes, and mosquitoes". BMJ. 312 (7038): 1105. doi:10.1136/bmj.312.7038.1105. ISSN 0959-8138.  ^ Fabricant, Florence (June 23, 1982). "Blue-veined Cheeses : The expanding choices". New York Times. Retrieved May 22, 2010.  ^ "Something is rotten in Roquefort". Business Week. December 31, 2001.  ^ "Gorgonzola, the cheese that lives". Italian Food Excellence. Retrieved 7 August 2016.  ^ "Castello® Gorgonzola". Castello. Retrieved 7 August 2016.  ^ "History of Stilton". StiltonCheese.co.uk. Retrieved 7 August 2016.  ^ "Food Composition Databases Show Foods -- Cheese, blue". ndb.nal.usda.gov.  ^ a b "What Makes Blue
Blue
Cheese
Cheese
Blue?". The Spruce. Retrieved 2017-11-13.  ^ "Methyl ketones : Butter". webexhibits.org.  ^ Shukla, Anuj; Narayanan, Theyencheri; Zanchi, Drazen (2009). "Structure of casein micelles and their complexation with tannins". Soft Matter. 5: 2884. doi:10.1039/b903103k. Retrieved 17 December 2017.  ^ Diezhandino; Fernandez; Gonzalez; McSweeney; Fresno (2015). "Microbiological, physio-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeon cheese)". Food Chemistry. 168 (1): 134–141. doi:10.1016/j.foodchem.2014.07.039.  ^ Gilliot; Jany; Poirier; Maillard; Debaets; Thierry; Coton; Coton (2017). "Functional diversity within the Penicillium
Penicillium
roqueforti species". International Journal of Food Microbiology. 241 (1). doi:10.1016/j.ijfoodmicro.2016.10.001.  ^ Fernandez-salguero (2004). "INTERNAL MOULD - RIPENED CHEESES: CHARACTERISTICS, COMPOSITION AND PROTEOLYSIS OF THE MAIN EUROPEAN BLUE VEIN VARIETIES". Italian Journal of Food Science. 16 (4). 

External links[edit]

Wikimedia Commons has media related to Blue
Blue
cheese.

How to make blue cheese at home What makes blue cheese blue? from The Straight Dope

v t e

Cheese

Types

Acid-set Blue Brined Cream Goat Green cheese Pasta filata Processed Smear-ripened Smoked Washed-rind Whey

Animal milk

Cow Goat Reindeer Sheep Water buffalo Yak Camel

Regions

Bandel Cornwall France Germany Ireland Italy Mexico Middle East Netherlands Poland Romania Serbia Spain Switzerland Turkey United Kingdom United States

Special
Special
designations

Appellation d'Origine Contrôlée
Appellation d'Origine Contrôlée
cheeses European cheeses with protected geographical status

Greek Italian

Organizations

American Cheese
Cheese
Society International Cheese
Cheese
Awards Lucerne Cheese
Cheese
Festival Mountain Cheese
Cheese
Olympics National Cheese
Cheese
Exchange The Great British Cheese
Cheese
Festival

List articles

Cheese
Cheese
dishes Cheesemakers Cheese
Cheese
soups Cheeses

Blue
Blue
cheeses Goat milk cheeses Sheep milk cheeses Stretch-curd cheeses Water buffalo cheeses

Miscellaneous

Cheese
Cheese
ripening Dairy salt

Cheese
Cheese
dishes Cheesemakers List of cheeses

v t e

Blue
Blue
cheeses

List of blue cheeses

Ädelost Aura Abbey Blue
Blue
Brie Bellingham Blue Bleu Bénédictin Bleu de Bresse Bleu des Causses Bleu d'Auvergne Bleu de Gex Bleu du Vercors-Sassenage Bleuchâtel Blue
Blue
Castello Buxton Blue Cabrales cheese Cambozola Cashel Blue Cheshire cheese Cornish Blue Crozier Blue Danish Blue Dolcelatte Dorset Blue
Blue
Vinney Dovedale Dragon's Breath Blue Fourme d'Ambert Fourme de Montbrison Gamalost Gorgonzola Grinzola Kraftkar Lanark Blue Lymeswold cheese Maytag Blue
Blue
cheese Newport 1665 Norbury Blue Oxford Blue Picón Bejes-Tresviso Rokpol Roquefort Saint Agur Blue Shropshire Blue Stichelton Stilton cheese Valdeón cheese Wensleydale c

.