Bjerrum defect
   HOME

TheInfoList



OR:

A Bjerrum defect is a crystallographic defect which is specific to ice, and which is partly responsible for the electrical properties of ice. It was first proposed by
Niels Bjerrum Niels Janniksen Bjerrum (11 March 1879 in Copenhagen – 30 September 1958) was a Danish chemist. Niels Bjerrum was the son of ophthalmologist Jannik Petersen Bjerrum, and started to study at University of Copenhagen in 1897. He received his ...
in 1952 in order to explain the electrical polarization of ice in an electric field. A
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
normally has one
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, but a hydrogen bond with a Bjerrum defect will have either two protons (D defect, from "doppel" in German, meaning "double") or no proton (L defect, from "leer" in German, meaning "empty"). D-defects are more energetically favorable than L-defects. The unfavorable defect strain is resolved when a water molecule pivots about an oxygen atom to produce hydrogen bonds with single protons. Dislocations of ice Ih along a slip plane create pairs of Bjerrum defects, one D defect and one L defect. Nonpolar molecules such as methane can form
clathrate hydrate Clathrate hydrates, or gas hydrates, clathrates, hydrates, etc., are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped ins ...
s with water, especially under high pressure. Although there is no
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
ing of water molecules when methane is the guest molecule of the clathrate, guest-host hydrogen bonding often forms with guest molecules in clathrates of many larger organic molecules, such as pinacolone and tetrahydrofuran. In such cases the guest-host hydrogen bonds result in the formation of L-type Bjerrum defect in the clathrate lattice. Oxygen atoms (in alcohol or carbonyl functional groups) and nitrogen atoms (in amine functional groups) in the guest molecules lead to transient hydrogen bonds and misoriented water molecules in the hydrate lattice.


References


See also

*
Ice rules In chemistry, ice rules are basic principles that govern arrangement of atoms in water ice. They are also known as Bernal–Fowler rules, after British physicists John Desmond Bernal and Ralph H. Fowler who first described them in 1933. The rules ...
Water ice Crystallographic defects Electrochemistry {{electrochem-stub