Barycentric Dynamical Time
   HOME

TheInfoList



OR:

Barycentric Dynamical Time (TDB, from the
French French (french: français(e), link=no) may refer to: * Something of, from, or related to France ** French language, which originated in France, and its various dialects and accents ** French people, a nation and ethnic group identified with Franc ...
Temps Dynamique Barycentrique) is a relativistic
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
scale, intended for astronomical use as a
time standard A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters o ...
to take account of
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
when calculating orbits and astronomical ephemerides of
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s,
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s,
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s and interplanetary
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, ...
in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. TDB is now (since 2006) defined as a linear scaling of
Barycentric Coordinate Time Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
(TCB). A feature that distinguishes TDB from TCB is that TDB, when observed from the Earth's surface, has a difference from Terrestrial Time (TT) that is about as small as can be practically arranged with consistent definition: the differences are mainly periodic,The periodic differences, due to relativistic effects, between a coordinate time scale applicable to the Solar-System barycenter, and time measured at the Earth's surface, were first estimated and are explained in: G M Clemence & V Szebehely
"Annual variation of an atomic clock"
Astronomical Journal, Vol.72 (1967), p.1324-6.
and overall will remain at less than 2 milliseconds for several millennia. TDB applies to the Solar-System-barycentric reference frame, and was first defined in 1976 as a successor to the (non-relativistic) former standard of ephemeris time (adopted by the IAU in 1952 and superseded 1976). In 2006, after a history of multiple time-scale definitions and deprecation since the 1970s, a redefinition of TDB was approved by the IAU. The 2006 IAU redefinition of TDB as an international standard expressly acknowledged that the long-established JPL ephemeris time argument Teph, as implemented in JPL Development Ephemeris
DE405 Jet Propulsion Laboratory Development Ephemeris (abbreved JPL DE(number), or simply DE(number)) designates one of a series of mathematical models of the Solar System produced at the Jet Propulsion Laboratory in Pasadena, California, for use in space ...
, "is for practical purposes the same as TDB defined in this Resolution" (By 2006, ephemeris DE405 had already been in use for a few years as the official basis for planetary and lunar ephemerides in the
Astronomical Almanac ''The Astronomical Almanac''The ''Astronomical Almanac'' for the Year 2015, (United States Naval Observatory/Nautical Almanac Office, 2014) . is an almanac published by the United States Naval Observatory (USNO) and His Majesty's Nautical Almanac ...
; it was the basis for editions for 2003 through 2014; in the edition for 2015 it is superseded by DE430).


Definition

IAU resolution 3 of 2006 defines TDB as a linear transformation of TCB. TCB diverges from both TDB and TT. TCB progresses faster at a differential rate of about 0.5 second/year, while TDB and TT remain close.Fig. 1 at p.835, a graph giving an overview of the rate differences and offsets between various standard time scales
present and past, defined by the IAU: for description see P K Seidelmann & T Fukushima (1992)
"Why new time scales?"
''Astronomy & Astrophysics'' vol.265 (1992), pages 833-838.
As of the beginning of 2011, the difference between TDB and TCB is about 16.6 seconds. :TDB = TCB − L×(JD − T)×86400 + TDB where L = 1.550519768, TDB = −6.55 s, T = 2443144.5003725, and JD is the TCB
Julian date The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
(that is, a quantity which was equal to T on 1977 January 1 00:00:00 TAI at the geocenter and which increases by one every 86400 seconds of TCB).


History

From the 17th century to the late 19th century, planetary ephemerides were calculated using time scales based on the Earth's rotation: usually the
mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
of one of the principal observatories, such as Paris or Greenwich. After 1884, mean solar time at Greenwich became a standard, later named
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
(UT). But in the later 19th and early 20th centuries, with the increasing precision of astronomical measurements, it began to be suspected, and was eventually established, that the rotation of the Earth (i.e. the length of the day) showed irregularities on short time scales, and was slowing down on longer time scales. Ephemeris time was consequently developed as a standard that was free from the irregularities of Earth rotation, by defining the time "as the independent variable of the equations of celestial mechanics", and it was at first measured astronomically, relying on the existing gravitational theories of the motions of the Earth about the Sun and of the Moon about the Earth. After the caesium
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...
was invented, such clocks were used increasingly from the late 1950s as secondary realizations of ephemeris time (ET). These secondary realizations improved on the original ET standard by the improved uniformity of the atomic clocks, and (e.g. in the late 1960s) they were used to provide standard time for planetary ephemeris calculations and in astrodynamics. But ET in principle did not yet take account of relativity theory. The size of the periodic part of the variations due to
time dilation In physics and relativity, time dilation is the difference in the elapsed time as measured by two clocks. It is either due to a relative velocity between them ( special relativistic "kinetic" time dilation) or to a difference in gravitational ...
between earth-based atomic clocks and the
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
of the Solar-System barycentric reference frame had been estimated at under 2 milliseconds, but in spite of this small size, it was increasingly considered in the early 1970s that time standards should be made suitable for applications in which differences due to relativistic time dilation could no longer be neglected. In 1976, two new time scales were defined to replace ET (in the ephemerides for 1984 and afterwards) to take account of relativity. ET's direct successor for measuring time on a geocentric basis was Terrestrial Dynamical Time (TDT). The new time scale to supersede ET for planetary ephemerides was to be Barycentric Dynamical Time (TDB). TDB was to tick uniformly in a reference frame comoving with the
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
of the Solar System. (As with any
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
, a corresponding clock, to coincide in rate, would need not only to be at rest in that reference frame, but also (an unattainable hypothetical condition) to be located outside all of the relevant
gravity well The Hill sphere of an astronomical body is the region in which it dominates the attraction of satellites. To be retained by a planet, a moon must have an orbit that lies within the planet's Hill sphere. That moon would, in turn, have a Hil ...
s.) In addition, TDB was to have (as observed/evaluated at the Earth's surface), over the long term average, the same rate as TDT (now TT). TDT and TDB were defined in a series of resolutions at the same 1976 meeting of the
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
. It was eventually realized that TDB was not well defined because it was not accompanied by a general relativistic metric and because the exact relationship between TDB and TDT had not been specified. (It was also later criticized as being not physically possible in exact accordance with its original definition: among other things the 1976 definition excluded a necessary small offset for the initial epoch of 1977.) After the difficulties were appreciated, in 1991 the IAU refined the official definitions of timescales by creating additional new time scales:
Barycentric Coordinate Time Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
(TCB) and
Geocentric Coordinate Time Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satelli ...
(TCG). TCB was intended as a replacement for TDB, and TCG was its equivalent for use in near-Earth space. TDT was also renamed to
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses ...
(TT), because of doubts raised about the appropriateness of the word "dynamical" in that connection. In 2006 TDB was redefined by IAU 2006 resolution 3; the 'new' TDB was expressly acknowledged as equivalent for practical purposes to JPL ephemeris time argument Teph; the difference between TDB according to the 2006 standard and TT (both as observed from the surface of the Earth), remains under 2 ms for several millennia around the present epoch.


Use of TDB

TDB is a successor of Ephemeris Time (ET), in that ET can be seen (within the limits of the lesser accuracy and precision achievable in its time) to be an approximation to TDB as well as to Terrestrial Time (TT) (see Ephemeris time § Implementations). TDB in the form of the very closely analogous, and practically equivalent, time scale Teph continues to be used for the important DE405 planetary and lunar ephemerides from the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, La Cañada Flintridge, California ...
. Arguments have been put forward for the continued practical use of TDB rather than TCB based on the very small size of the difference between TDB and TT, not exceeding 0.002 second, which can be neglected for many applications. It has been argued that the smallness of this difference makes for a lower risk of damage if TDB is ever confused with TT, compared to the possible damage of confusing TCB and TT, which have a relative linear drift of about 0.5 second per year,S A Klioner (2008), "Relativistic scaling of astronomical quantities and the system of astronomical units", ''Astronomy and Astrophysics'', vol.478 (2008), pp.951-958, at page 953. (the difference was close to zero at the start of 1977, and by 2009 was already over a quarter of a minute and increasing).


References


External links


United States Naval Observatory Circular 179 : The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models Explanation and Implementation
{{Time measurement and standards General relativity Special relativity Time scales