B2FH paper
   HOME

TheInfoList



OR:

The B2FH paper was a landmark
scientific paper : ''For a broader class of literature, see Academic publishing.'' Scientific literature comprises scholarly publications that report original empirical and theoretical work in the natural and social sciences. Within an academic field, scienti ...
on the origin of the chemical elements. The paper's title is ''Synthesis of the Elements in Stars'', but it became known as B2FH from the initials of its authors:
Margaret Burbidge Eleanor Margaret Burbidge, FRS (; 12 August 1919 – 5 April 2020) was a British-American observational astronomer and astrophysicist. In the 1950s, she was one of the founders of stellar nucleosynthesis and was first author of the influentia ...
,
Geoffrey Burbidge Geoffrey Ronald Burbidge FRS (24 September 1925 – 26 January 2010) was an English astronomy professor and theoretical astrophysicist, most recently at the University of California, San Diego. He was married to astrophysicist Margaret Burbi ...
, William A. Fowler, and
Fred Hoyle Sir Fred Hoyle FRS (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper. He also held controversial stances on other sci ...
. It was written from 1955 to 1956 at the
University of Cambridge The University of Cambridge is a public collegiate research university in Cambridge, England. Founded in 1209 and granted a royal charter by Henry III in 1231, Cambridge is the world's third oldest surviving university and one of its most pr ...
and
Caltech The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
, then published in ''
Reviews of Modern Physics ''Reviews of Modern Physics'' (abbreviated RMP) is a quarterly peer-reviewed scientific journal published by the American Physical Society. It was established in 1929 and the current editor-in-chief is Michael Thoennessen. The journal publishes r ...
'' in 1957. The B2FH paper reviewed stellar nucleosynthesis theory and supported it with astronomical and laboratory data. It identified nucleosynthesis processes that are responsible for producing the elements heavier than iron and explained their relative abundances. The paper became highly influential in both
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
.


Nucleosynthesis prior to 1957

Prior to the publication of the B2FH paper, George Gamow advocated a theory of the Universe in which almost all
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s, or equivalently atomic nuclei, were synthesized during the Big Bang. Gamow's theory (which differs from present-day
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
theory) would imply that the
abundance of the chemical elements The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass-fraction (the same as weight fraction); ...
would remain mostly static over time.
Hans Bethe Hans Albrecht Bethe (; July 2, 1906 – March 6, 2005) was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel ...
and Charles L. Critchfield had shown that the conversion of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
into
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
by
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
could provide the energy required to power stars, by deriving the proton-proton chain (pp-chain) in 1938. Carl von Weizsäcker and Hans Bethe had independently derived the
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
in 1938 and 1939, respectively. Thus, it was known by Gamow and others that the abundances of hydrogen and helium were not perfectly static. According to their view, fusion in stars would produce small amounts of helium, adding only slightly to its abundance from the Big Bang. This stellar nuclear power did not require substantial stellar nucleosynthesis. The elements from carbon upward remained a mystery. Fred Hoyle offered a hypothesis for the origin of heavy elements. Beginning with a paper in 1946, and expanded upon in 1954, Hoyle proposed that all atomic nuclei heavier than
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
were synthesized in stars. Both theories agreed that some light nuclei (hydrogen, helium and a small amount of lithium) were not produced in stars, which became the now-accepted theory of
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
of H, He and Li.


Physics in the paper

The B2FH paper was ostensibly a
review article A review article is an article that summarizes the current state of understanding on a topic within a certain discipline. A review article is generally considered a secondary source since it may analyze and discuss the method and conclusions i ...
summarising recent advances in the theory of stellar nucleosynthesis. However, it went beyond simply reviewing Hoyle's work, by incorporating observational measurements of elemental abundances published by the Burbidges, and Fowler's laboratory experiments on nuclear reactions. The result was a synthesis of theory and observation, which provided convincing evidence for Hoyle's hypothesis. The theory predicted that the abundances of the elements would evolve over cosmological time, an idea which is testable by
astronomical spectroscopy Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars a ...
. Each element has a characteristic set of spectral lines, so
stellar spectroscopy Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and othe ...
can be used to infer the atmospheric composition of individual stars. Observations indicate a strong negative correlation between a star's initial heavy element content (known as the metallicity) and its age. More recently formed stars tend to have higher metallicity. The early Universe consisted of only the light elements formed during
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
.
Stellar structure Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflec ...
and the Hertzsprung–Russell diagram indicate that the length of the lifetime of a star depends greatly on its initial mass, with the most massive stars being very short-lived, and less massive stars are longer-lived. The B2FH paper argued that when a star dies, it will enrich the interstellar medium with 'heavy elements' (in this case all elements heavier than lithium), from which newer stars are formed. The B2FH paper described key aspects of the
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
and astrophysics involved in how stars produce these heavy elements. By scrutinizing the
table of nuclides A table or chart of nuclides is a two-dimensional Cartesian coordinate system, graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol ''N'') and the other represents the number of protons (atomic number, sy ...
, the authors identified different stellar environments that could produce the observed isotopic abundance patterns and the nuclear processes that must be responsible for them. The authors invoke nuclear physics processes, now known as the p-process, r-process, and s-process, to account for the elements heavier than
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
. The abundances of these heavy elements and their isotopes are roughly 100,000 times less than those of the major elements, which supported Hoyle's 1954 hypothesis of nuclear fusion within the burning shells of massive stars. B2FH comprehensively outlined and analyzed the nucleosynthesis of the elements heavier than iron by the capture within stars of free neutrons. It advanced much less the understanding of the synthesis of the very abundant elements from silicon to nickel. The paper did not include the carbon-burning process, the
oxygen-burning process The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning pr ...
and the silicon-burning process, each of which contribute to the elements from magnesium to nickel. Hoyle had already suggested that supernova nucleosynthesis could be responsible for these in his 1954 paper. Donald D. Clayton has attributed the lower number of
citations A citation is a reference to a source. More precisely, a citation is an abbreviated alphanumeric expression embedded in the body of an intellectual work that denotes an entry in the bibliographic references section of the work for the purpose of ...
to Hoyle's 1954 paper compared to B2FH as a combination of factors: the difficulty of digesting Hoyle's 1954 paper even for his B2FH coauthors, and among astronomers generally; to Hoyle's having described its key equation only in words rather than writing it prominently in his paper; and to Hoyle's incomplete review of the B2FH draft.


Writing of the paper

The Caltech nuclear physicist
William Alfred Fowler William Alfred Fowler ( ) was an American nuclear physicist, later astrophysicist, who, with Subrahmanyan Chandrasekhar, won the 1983 Nobel Prize in Physics. He is known for his theoretical and experimental research into nuclear reactions with ...
used his sabbatical leave to visit Hoyle in Cambridge from 1954 to 1955. The pair invited
Margaret Burbidge Eleanor Margaret Burbidge, FRS (; 12 August 1919 – 5 April 2020) was a British-American observational astronomer and astrophysicist. In the 1950s, she was one of the founders of stellar nucleosynthesis and was first author of the influentia ...
and
Geoffrey Burbidge Geoffrey Ronald Burbidge FRS (24 September 1925 – 26 January 2010) was an English astronomy professor and theoretical astrophysicist, most recently at the University of California, San Diego. He was married to astrophysicist Margaret Burbi ...
to join them in Cambridge, as the couple had recently published extensive work on stellar abundances that would be required to test Hoyle's hypothesis. The quartet collaborated on several projects whilst in Cambridge; Fowler and Hoyle began work on a review that would become B2FH. Fowler returned to Caltech with the work far from complete, and encouraged the Burbidges to join him in California. Both of the Burbidges had temporary positions created for them in 1956 at Caltech by Fowler for this purpose. The first complete draft was completed by the Burbidges in 1956 at Caltech, after adding extensive astronomical observations and experimental data to support the theory. Margaret Burbidge, the paper's first author, completed much of the work whilst pregnant. The final paper is 104 pages long, with 34 plots, 4 photographic plates, and 22
table Table may refer to: * Table (furniture), a piece of furniture with a flat surface and one or more legs * Table (landform), a flat area of land * Table (information), a data arrangement with rows and columns * Table (database), how the table data ...
s; despite this length, it does not have an abstract. Some have presumed that Fowler was the leader of the group because the writing and submission for publication were done at Caltech in 1956, but Geoffrey Burbidge has stated that this is a misconception. Fowler, though an accomplished nuclear physicist, was still learning Hoyle's theory in 1955 and later stated that Hoyle was the intellectual leader. The Burbidges also learnt Hoyle's theory during 1954–55 in Cambridge. "There was no leader in the group," G. Burbidge wrote in 2008, "we all made substantial contributions".


Recognition

B2FH drew scientific attention to the field of
nuclear astrophysics Nuclear astrophysics is an interdisciplinary part of both nuclear physics and astrophysics, involving close collaboration among researchers in various subfields of each of these fields. This includes, notably, nuclear reactions and their rates as ...
. By reviewing the theory of stellar nucleosynthesis and supporting it with observational evidence, B2FH firmly established the theory among astronomers. Fowler was awarded half of the 1983
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
, which has sometimes been erroneously stated was for his contributions to B2FH. The Nobel committee stated that the prize was for Fowler's decades of experimental work on the rates of thermonuclear reactions in stellar cores. Fowler's contributions to B2FH included the nuclear physics of the ''s''-process and the ''r''-process. Some have argued that
Fred Hoyle Sir Fred Hoyle FRS (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper. He also held controversial stances on other sci ...
deserved similar recognition for theoretical work on the topic, and contend that his unorthodox views concerning the Big Bang stopped him being awarded a share of the Nobel Prize.
Geoffrey Burbidge Geoffrey Ronald Burbidge FRS (24 September 1925 – 26 January 2010) was an English astronomy professor and theoretical astrophysicist, most recently at the University of California, San Diego. He was married to astrophysicist Margaret Burbi ...
wrote in 2008, "Hoyle should have been awarded a Nobel Prize for this and other work. On the basis of my private correspondence, I believe that a major reason for his exclusion was that W. A. Fowler was believed to be the leader of the group." Burbidge stated that this perception is not true and pointed to Hoyle's earlier papers from 1946 and 1954. Burbidge said that "Hoyle's work has been undercited in part because it was published in an astrophysical journal, and a new one at that (the very first volume, in fact), whereas B2FH was published in a well-established physics journal, ''
Reviews of Modern Physics ''Reviews of Modern Physics'' (abbreviated RMP) is a quarterly peer-reviewed scientific journal published by the American Physical Society. It was established in 1929 and the current editor-in-chief is Michael Thoennessen. The journal publishes r ...
''. When B2FH was first written, preprints were widely distributed to the
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
community. Willy Fowler was very well known as a leader in that community, and the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
already had a news bureau that knew how to spread the word." In 2007 a conference was held at Caltech in Pasadena, California to commemorate the 50th anniversary of the publication of B2FH, where Geoffrey Burbidge presented remarks on the writing of B2FH.


See also

*
Alpher–Bethe–Gamow paper In physical cosmology, the Alpher–Bethe–Gamow paper, or αβγ paper, was created by Ralph Alpher, then a physics PhD student, his advisor George Gamow and Hans Bethe. The work, which would become the subject of Alpher's PhD dissertation, arg ...


Further reading

*


References

{{DISPLAYTITLE:B2FH paper Nuclear physics Nucleosynthesis Astrophysics 1957 documents 1957 in science Physics papers