Set theory is the branch of

real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

s can be derived within set theory, as each number system can be identified with a set of

axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection o ...

fails. Forcing adjoins to some given model of set theory additional sets in order to create a larger model with properties determined (i.e. "forced") by the construction and the original model. For example, Cohen's construction adjoins additional subsets of the

axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection o ...

and the ''Homotopy Type Theory: Univalent Foundations of Mathematics''

The Univalent Foundations Program.

real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

s, etc.), and when defining a

Venn diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships ...

Set Theory

article in the ''

"The Early Development of Set Theory"

article in the '' tanford Encyclopedia of Philosophy'. * Foreman, Matthew, Akihiro Kanamori, eds.

Handbook of Set Theory

'. 3 vols., 2010. Each chapter surveys some aspect of contemporary research in set theory. Does not cover established elementary set theory, on which see Devlin (1993). * * * Schoenflies, Arthur (1898)

Mengenlehre

in Klein's encyclopedia. * * {{Authority control S Formal methods Georg Cantor

mathematical logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...

that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...

, is mostly concerned with those that are relevant to mathematics as a whole.
The modern study of set theory was initiated by the German mathematicians Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...

and Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ; – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance o ...

in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It d ...

''. After the discovery of paradoxes
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...

within naive set theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It d ...

(such as Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains a ...

, Cantor's paradox and the Burali-Forti paradox) various axiomatic system
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contain ...

s were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...

(with or without the axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection o ...

) is still the best-known and most studied.
Set theory is commonly employed as a foundational system for the whole of mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Besides its foundational role, set theory also provides the framework to develop a mathematical theory of infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol .
Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...

, and has various applications in computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includ ...

(such as in the theory of relational algebra
In database theory, relational algebra is a theory that uses algebraic structures with a well-founded semantics for modeling data, and defining queries on it. The theory was introduced by Edgar F. Codd.
The main application of relational algeb ...

), philosophy
Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. So ...

and formal semantics. Its foundational appeal, together with its paradoxes
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...

, its implications for the concept of infinity and its multiple applications, have made set theory an area of major interest for logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premi ...

ians and philosophers of mathematics. Contemporary research into set theory covers a vast array of topics, ranging from the structure of the real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

line to the study of the consistency
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent i ...

of large cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...

s.
History

Mathematical topics typically emerge and evolve through interactions among many researchers. Set theory, however, was founded by a single paper in 1874 byGeorg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ; – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance o ...

: "On a Property of the Collection of All Real Algebraic Numbers
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is unc ...

".
Since the 5th century BC, beginning with Greek mathematician Zeno of Elea
Zeno of Elea (; grc, Ζήνων ὁ Ἐλεᾱ́της; ) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known fo ...

in the West and early Indian mathematicians
chronology of Indian mathematicians spans from the Indus Valley civilisation and the Vedas to Modern India.
Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians ...

in the East, mathematicians had struggled with the concept of infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol .
Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...

. Especially notable is the work of Bernard Bolzano
Bernard Bolzano (, ; ; ; born Bernardus Placidus Johann Gonzal Nepomuk Bolzano; 5 October 1781 – 18 December 1848) was a Bohemian mathematician, logician, philosopher, theologian and Catholic priest of Italian extraction, also known for his lib ...

in the first half of the 19th century. Modern understanding of infinity began in 1870–1874, and was motivated by Cantor's work in real analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include conv ...

. An 1872 meeting between Cantor and Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...

influenced Cantor's thinking, and culminated in Cantor's 1874 paper.
Cantor's work initially polarized the mathematicians of his day. While Karl Weierstrass
Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics ...

and Dedekind supported Cantor, Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers ...

, now seen as a founder of mathematical constructivism, did not. Cantorian set theory eventually became widespread, due to the utility of Cantorian concepts, such as one-to-one correspondence
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...

among sets, his proof that there are more real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

s than integers, and the "infinity of infinities" (" Cantor's paradise") resulting from the power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is pos ...

operation. This utility of set theory led to the article "Mengenlehre", contributed in 1898 by Arthur Schoenflies to Klein's encyclopedia.
The next wave of excitement in set theory came around 1900, when it was discovered that some interpretations of Cantorian set theory gave rise to several contradictions, called antinomies or paradoxes
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...

. Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, ar ...

and Ernst Zermelo independently found the simplest and best known paradox, now called Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains a ...

: consider "the set of all sets that are not members of themselves", which leads to a contradiction since it must be a member of itself and not a member of itself. In 1899, Cantor had himself posed the question "What is the cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...

of the set of all sets?", and obtained a related paradox. Russell used his paradox as a theme in his 1903 review of continental mathematics in his ''The Principles of Mathematics
''The Principles of Mathematics'' (''PoM'') is a 1903 book by Bertrand Russell, in which the author presented his famous paradox and argued his thesis that mathematics and logic are identical.
The book presents a view of the foundations of ...

''. Rather than the term ''set'', Russell used the term ''class
Class or The Class may refer to:
Common uses not otherwise categorized
* Class (biology), a taxonomic rank
* Class (knowledge representation), a collection of individuals or objects
* Class (philosophy), an analytical concept used differentl ...

'', which has subsequently been used more technically.
In 1906, the term ''set'' appeared in the book ''Theory of Sets of Points'' by husband and wife William Henry Young and Grace Chisholm Young, published by Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer.
Cambridge University Press i ...

.
The momentum of set theory was such that debate on the paradoxes did not lead to its abandonment. The work of Zermelo in 1908 and the work of Abraham Fraenkel and Thoralf Skolem in 1922 resulted in the set of axioms ZFC, which became the most commonly used set of axioms for set theory. The work of analysts, such as that of Henri Lebesgue
Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of ...

, demonstrated the great mathematical utility of set theory, which has since become woven into the fabric of modern mathematics. Set theory is commonly used as a foundational system, although in some areas—such as algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...

and algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify u ...

—category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cat ...

is thought to be a preferred foundation.
Basic concepts and notation

Set theory begins with a fundamentalbinary relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in ...

between an object and a set . If is a '' member'' (or ''element'') of , the notation is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces . Since sets are objects, the membership relation can relate sets as well.
A derived binary relation between two sets is the subset relation, also called ''set inclusion''. If all the members of set are also members of set , then is a ''subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...

'' of , denoted . For example, is a subset of , and so is but is not. As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term ''proper subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...

'' is defined. is called a ''proper subset'' of if and only if is a subset of , but is not equal to . Also, 1, 2, and 3 are members (elements) of the set , but are not subsets of it; and in turn, the subsets, such as , are not members of the set .
Just as arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19t ...

features binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, an internal binary o ...

s on number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...

s, set theory features binary operations on sets. The following is a partial list of them:
*'' Union'' of the sets and , denoted , is the set of all objects that are a member of , or , or both. For example, the union of and is the set .
*''Intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...

'' of the sets and , denoted , is the set of all objects that are members of both and . For example, the intersection of and is the set .
*''Set difference
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in .
When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is th ...

'' of and , denoted , is the set of all members of that are not members of . The set difference is , while conversely, the set difference is . When is a subset of , the set difference is also called the ''complement
A complement is something that completes something else.
Complement may refer specifically to:
The arts
* Complement (music), an interval that, when added to another, spans an octave
** Aggregate complementation, the separation of pitch-clas ...

'' of in . In this case, if the choice of is clear from the context, the notation is sometimes used instead of , particularly if is a universal set
In set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory inc ...

as in the study of Venn diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships ...

s.
*''Symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \.
Th ...

'' of sets and , denoted or , is the set of all objects that are a member of exactly one of and (elements which are in one of the sets, but not in both). For instance, for the sets and , the symmetric difference set is . It is the set difference of the union and the intersection, or .
*''Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\tim ...

'' of and , denoted , is the set whose members are all possible ordered pair
In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...

s , where is a member of and is a member of . For example, the Cartesian product of
*''Power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is pos ...

'' of a set , denoted $\backslash mathcal(A)$, is the set whose members are all of the possible subsets of . For example, the power set of is .
Some basic sets of central importance are the set of natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...

s, the set of real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...

s and the empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in othe ...

—the unique set containing no elements. The empty set is also occasionally called the ''null set'', though this name is ambiguous and can lead to several interpretations.
Ontology

A set is pure if all of its members are sets, all members of its members are sets, and so on. For example, the set containing only the empty set is a nonempty pure set. In modern set theory, it is common to restrict attention to the '' von Neumann universe'' of pure sets, and many systems ofaxiomatic set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...

are designed to axiomatize the pure sets only. There are many technical advantages to this restriction, and little generality is lost, because essentially all mathematical concepts can be modeled by pure sets. Sets in the von Neumann universe are organized into a cumulative hierarchy, based on how deeply their members, members of members, etc. are nested. Each set in this hierarchy is assigned (by transfinite recursion
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC.
Induction by cases
Let P(\alpha) be a property defined for a ...

) an ordinal number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets.
A finite set can be enumerated by successively labeling each element with the least n ...

$\backslash alpha$, known as its ''rank.'' The rank of a pure set $X$ is defined to be the least ordinal that is strictly greater than the rank of any of its elements. For example, the empty set is assigned rank 0, while the set containing only the empty set is assigned rank 1. For each ordinal $\backslash alpha$, the set $V\_$ is defined to consist of all pure sets with rank less than $\backslash alpha$. The entire von Neumann universe is denoted $V$.
Formalized set theory

Elementary set theory can be studied informally and intuitively, and so can be taught in primary schools usingVenn diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships ...

s. The intuitive approach tacitly assumes that a set may be formed from the class of all objects satisfying any particular defining condition. This assumption gives rise to paradoxes, the simplest and best known of which are Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains a ...

and the Burali-Forti paradox. Axiomatic set theory was originally devised to rid set theory of such paradoxes.
The most widely studied systems of axiomatic set theory imply that all sets form a cumulative hierarchy. Such systems come in two flavors, those whose ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality.
Ontology addresses questions like how entities are grouped into categories and which of these entities exi ...

consists of:
*''Sets alone''. This includes the most common axiomatic set theory, Zermelo–Fraenkel set theory with the axiom of choice (ZFC). Fragments of ZFC include:
** Zermelo set theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It ...

, which replaces the axiom schema of replacement
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infini ...

with that of separation;
** General set theory
General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.
...

, a small fragment of Zermelo set theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It ...

sufficient for the Peano axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...

and finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
:\
is a finite set with five elements. T ...

s;
** Kripke–Platek set theory
The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek.
The theory can be thought of as roughly the predicative part of ZFC and is considerably weaker than it.
Axioms
In its f ...

, which omits the axioms of infinity, powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is pos ...

, and choice
A choice is the range of different things from which a being can choose. The arrival at a choice may incorporate motivators and models. For example, a traveler might choose a route for a journey based on the preference of arriving at a give ...

, and weakens the axiom schemata of separation and replacement.
*''Sets and proper class
Proper may refer to:
Mathematics
* Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact
* Proper morphism, in algebraic geometry, an analogue of a proper map for ...

es''. These include Von Neumann–Bernays–Gödel set theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a coll ...

, which has the same strength as ZFC for theorems about sets alone, and Morse–Kelley set theory and Tarski–Grothendieck set theory, both of which are stronger than ZFC.
The above systems can be modified to allow '' urelements'', objects that can be members of sets but that are not themselves sets and do not have any members.
The '' New Foundations'' systems of NFU (allowing urelements) and NF (lacking them), associate with Willard Van Orman Quine
Willard Van Orman Quine (; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century" ...

, are not based on a cumulative hierarchy. NF and NFU include a "set of everything", relative to which every set has a complement. In these systems urelements matter, because NF, but not NFU, produces sets for which the axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection o ...

does not hold. Despite NF's ontology not reflecting the traditional cumulative hierarchy and violating well-foundedness, Thomas Forster has argued that it does reflect an iterative conception of set.
Systems of constructive set theory
Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory.
The same first-order language with "=" and "\in" of classical set theory is usually used, so this is not to be confused with a ...

, such as CST, CZF, and IZF, embed their set axioms in intuitionistic instead of classical logic
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.
Characteristics
Each logical system in this class ...

. Yet other systems accept classical logic but feature a nonstandard membership relation. These include rough set theory and fuzzy set theory, in which the value of an atomic formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformu ...

embodying the membership relation is not simply True or False. The Boolean-valued models of ZFC are a related subject.
An enrichment of ZFC called internal set theory
Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, ...

was proposed by Edward Nelson in 1977.
Applications

Many mathematical concepts can be defined precisely using only set theoretic concepts. For example, mathematical structures as diverse asgraph
Graph may refer to:
Mathematics
* Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of disc ...

s, manifolds
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ne ...

, rings, vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ca ...

s, and relational algebra
In database theory, relational algebra is a theory that uses algebraic structures with a well-founded semantics for modeling data, and defining queries on it. The theory was introduced by Edgar F. Codd.
The main application of relational algeb ...

s can all be defined as sets satisfying various (axiomatic) properties. Equivalence and order relation
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intro ...

s are ubiquitous in mathematics, and the theory of mathematical relations can be described in set theory.
Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of ''Principia Mathematica
The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...

'', it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first
First or 1st is the ordinal form of the number one (#1).
First or 1st may also refer to:
*World record, specifically the first instance of a particular achievement
Arts and media Music
* 1$T, American rapper, singer-songwriter, DJ, and rec ...

or second-order logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.
First-order logic quantifies on ...

. For example, properties of the natural and equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...

es under a suitable equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation ...

whose field is some infinite set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable.
Properties
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set t ...

.
Set theory as a foundation for mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.
These theories are usually studied in ...

, topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...

, abstract algebra, and discrete mathematics
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous ...

is likewise uncontroversial; mathematicians accept (in principle) that theorems in these areas can be derived from the relevant definitions and the axioms of set theory. However, it remains that few full derivations of complex mathematical theorems from set theory have been formally verified, since such formal derivations are often much longer than the natural language proofs mathematicians commonly present. One verification project, Metamath, includes human-written, computer-verified derivations of more than 12,000 theorems starting from ZFC set theory, first-order logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...

and propositional logic
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations ...

.
Areas of study

Set theory is a major area of research in mathematics, with many interrelated subfields.Combinatorial set theory

''Combinatorial set theory'' concerns extensions of finitecombinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many app ...

to infinite sets. This includes the study of cardinal arithmetic
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ...

and the study of extensions of Ramsey's theorem
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (sa ...

such as the Erdős–Rado theorem.
Descriptive set theory

''Descriptive set theory'' is the study of subsets of thereal line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poin ...

and, more generally, subsets of Polish spaces. It begins with the study of pointclass
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized b ...

es in the Borel hierarchy In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number call ...

and extends to the study of more complex hierarchies such as the projective hierarchy
In the mathematical field of descriptive set theory, a subset A of a Polish space X is projective if it is \boldsymbol^1_n for some positive integer n. Here A is
* \boldsymbol^1_1 if A is analytic
* \boldsymbol^1_n if the complement of A, X\se ...

and the Wadge hierarchy. Many properties of Borel set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are nam ...

s can be established in ZFC, but proving these properties hold for more complicated sets requires additional axioms related to determinacy and large cardinals.
The field of effective descriptive set theory is between set theory and recursion theory. It includes the study of lightface pointclasses, and is closely related to hyperarithmetical theory. In many cases, results of classical descriptive set theory have effective versions; in some cases, new results are obtained by proving the effective version first and then extending ("relativizing") it to make it more broadly applicable.
A recent area of research concerns Borel equivalence relations and more complicated definable equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation ...

s. This has important applications to the study of invariants in many fields of mathematics.
Fuzzy set theory

In set theory asCantor
A cantor or chanter is a person who leads people in singing or sometimes in prayer. In formal Jewish worship, a cantor is a person who sings solo verses or passages to which the choir or congregation responds.
In Judaism, a cantor sings and lead ...

defined and Zermelo and Fraenkel axiomatized, an object is either a member of a set or not. In '' fuzzy set theory'' this condition was relaxed by Lotfi A. Zadeh so an object has a ''degree of membership'' in a set, a number between 0 and 1. For example, the degree of membership of a person in the set of "tall people" is more flexible than a simple yes or no answer and can be a real number such as 0.75.
Inner model theory

An ''inner model'' of Zermelo–Fraenkel set theory (ZF) is a transitiveclass
Class or The Class may refer to:
Common uses not otherwise categorized
* Class (biology), a taxonomic rank
* Class (knowledge representation), a collection of individuals or objects
* Class (philosophy), an analytical concept used differentl ...

that includes all the ordinals and satisfies all the axioms of ZF. The canonical example is the constructible universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It w ...

''L'' developed by Gödel.
One reason that the study of inner models is of interest is that it can be used to prove consistency results. For example, it can be shown that regardless of whether a model ''V'' of ZF satisfies the continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...

or the axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection o ...

, the inner model ''L'' constructed inside the original model will satisfy both the generalized continuum hypothesis and the axiom of choice. Thus the assumption that ZF is consistent (has at least one model) implies that ZF together with these two principles is consistent.
The study of inner models is common in the study of determinacy and large cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ...

s, especially when considering axioms such as the axiom of determinacy that contradict the axiom of choice. Even if a fixed model of set theory satisfies the axiom of choice, it is possible for an inner model to fail to satisfy the axiom of choice. For example, the existence of sufficiently large cardinals implies that there is an inner model satisfying the axiom of determinacy (and thus not satisfying the axiom of choice).
Large cardinals

A ''large cardinal'' is a cardinal number with an extra property. Many such properties are studied, including inaccessible cardinals,measurable cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivisi ...

s, and many more. These properties typically imply the cardinal number must be very large, with the existence of a cardinal with the specified property unprovable in Zermelo–Fraenkel set theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...

.
Determinacy

''Determinacy'' refers to the fact that, under appropriate assumptions, certain two-player games of perfect information are determined from the start in the sense that one player must have a winning strategy. The existence of these strategies has important consequences in descriptive set theory, as the assumption that a broader class of games is determined often implies that a broader class of sets will have a topological property. The axiom of determinacy (AD) is an important object of study; although incompatible with the axiom of choice, AD implies that all subsets of the real line are well behaved (in particular, measurable and with the perfect set property). AD can be used to prove that the Wadge degrees have an elegant structure.Forcing

Paul Cohen invented the method of '' forcing'' while searching for amodel
A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure.
Models c ...

of ZFC in which the continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...

fails, or a model of ZF in which the natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...

s without changing any of the cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...

s of the original model. Forcing is also one of two methods for proving relative consistency by finitistic methods, the other method being Boolean-valued models.
Cardinal invariants

A ''cardinal invariant'' is a property of the real line measured by a cardinal number. For example, a well-studied invariant is the smallest cardinality of a collection ofmeagre set
In the mathematical field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is calle ...

s of reals whose union is the entire real line. These are invariants in the sense that any two isomorphic models of set theory must give the same cardinal for each invariant. Many cardinal invariants have been studied, and the relationships between them are often complex and related to axioms of set theory.
Set-theoretic topology

''Set-theoretic topology'' studies questions ofgeneral topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometri ...

that are set-theoretic in nature or that require advanced methods of set theory for their solution. Many of these theorems are independent of ZFC, requiring stronger axioms for their proof. A famous problem is the normal Moore space question, a question in general topology that was the subject of intense research. The answer to the normal Moore space question was eventually proved to be independent of ZFC.
Objections to set theory

From set theory's inception, some mathematicians have objected to it as a foundation for mathematics. The most common objection to set theory, one Kronecker voiced in set theory's earliest years, starts from the constructivist view that mathematics is loosely related to computation. If this view is granted, then the treatment of infinite sets, both in naive and in axiomatic set theory, introduces into mathematics methods and objects that are not computable even in principle. The feasibility of constructivism as a substitute foundation for mathematics was greatly increased byErrett Bishop
Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an American mathematician known for his work on analysis. He expanded constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he proved most of the important t ...

's influential book ''Foundations of Constructive Analysis''.
A different objection put forth by Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...

is that defining sets using the axiom schemas of specification
A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard.
There are different types of technical or engineering specificati ...

and replacement, as well as the axiom of power set, introduces impredicativity
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more co ...

, a type of circularity, into the definitions of mathematical objects. The scope of predicatively founded mathematics, while less than that of the commonly accepted Zermelo–Fraenkel theory, is much greater than that of constructive mathematics, to the point that Solomon Feferman
Solomon Feferman (December 13, 1928 – July 26, 2016) was an American philosopher and mathematician who worked in mathematical logic.
Life
Solomon Feferman was born in The Bronx in New York City to working-class parents who had immigrated to th ...

has said that "all of scientifically applicable analysis can be developed sing predicative methods.
Ludwig Wittgenstein
Ludwig Josef Johann Wittgenstein ( ; ; 26 April 1889 – 29 April 1951) was an Austrian- British philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language. He is conside ...

condemned set theory philosophically for its connotations of mathematical platonism. He wrote that "set theory is wrong", since it builds on the "nonsense" of fictitious symbolism, has "pernicious idioms", and that it is nonsensical to talk about "all numbers". Wittgenstein identified mathematics with algorithmic human deduction; the need for a secure foundation for mathematics seemed, to him, nonsensical. Moreover, since human effort is necessarily finite, Wittgenstein's philosophy required an ontological commitment to radical constructivism
Constructivism may refer to:
Art and architecture
* Constructivism (art), an early 20th-century artistic movement that extols art as a practice for social purposes
* Constructivist architecture, an architectural movement in Russia in the 1920s ...

and finitism
Finitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are a ...

. Meta-mathematical statements — which, for Wittgenstein, included any statement quantifying over infinite domains, and thus almost all modern set theory — are not mathematics. Few modern philosophers have adopted Wittgenstein's views after a spectacular blunder in '' Remarks on the Foundations of Mathematics'': Wittgenstein attempted to refute Gödel's incompleteness theorems
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philo ...

after having only read the abstract. As reviewers Kreisel, Bernays, Dummett, and Goodstein all pointed out, many of his critiques did not apply to the paper in full. Only recently have philosophers such as Crispin Wright
Crispin James Garth Wright (; born 21 December 1942) is a British philosopher, who has written on neo-Fregean (neo-logicist) philosophy of mathematics, Wittgenstein's later philosophy, and on issues related to truth, realism, cognitivism, s ...

begun to rehabilitate Wittgenstein's arguments.
Category theorists have proposed topos theory
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion ...

as an alternative to traditional axiomatic set theory. Topos theory can interpret various alternatives to that theory, such as constructivism
Constructivism may refer to:
Art and architecture
* Constructivism (art), an early 20th-century artistic movement that extols art as a practice for social purposes
* Constructivist architecture, an architectural movement in Russia in the 1920s ...

, finite set theory, and computable
Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...

set theory. Topoi also give a natural setting for forcing and discussions of the independence of choice from ZF, as well as providing the framework for pointless topology and Stone spaces.
An active area of research is the univalent foundations and related to it homotopy type theory. Within homotopy type theory, a set may be regarded as a homotopy 0-type, with universal properties of sets arising from the inductive and recursive properties of higher inductive types. Principles such as the law of the excluded middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontradi ...

can be formulated in a manner corresponding to the classical formulation in set theory or perhaps in a spectrum of distinct ways unique to type theory. Some of these principles may be proven to be a consequence of other principles. The variety of formulations of these axiomatic principles allows for a detailed analysis of the formulations required in order to derive various mathematical results.The Univalent Foundations Program.

Institute for Advanced Study
The Institute for Advanced Study (IAS), located in Princeton, New Jersey, in the United States, is an independent center for theoretical research and intellectual inquiry. It has served as the academic home of internationally preeminent scholar ...

.
Set theory in mathematical education

As set theory gained popularity as a foundation for modern mathematics, there has been support for the idea of introducing the basics ofnaive set theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It d ...

early in mathematics education
In contemporary education, mathematics education, known in Europe as the didactics or pedagogy of mathematics – is the practice of teaching, learning and carrying out scholarly research into the transfer of mathematical knowledge.
Although re ...

.
In the US in the 1960s, the New Math experiment aimed to teach basic set theory, among other abstract concepts, to primary school
A primary school (in Ireland, the United Kingdom, Australia, Trinidad and Tobago, Jamaica, and South Africa), junior school (in Australia), elementary school or grade school (in North America and the Philippines) is a school for primary e ...

students, but was met with much criticism. The math syllabus in European schools followed this trend, and currently includes the subject at different levels in all grades. Venn diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships ...

s are widely employed to explain basic set-theoretic relationships to primary school
A primary school (in Ireland, the United Kingdom, Australia, Trinidad and Tobago, Jamaica, and South Africa), junior school (in Australia), elementary school or grade school (in North America and the Philippines) is a school for primary e ...

students (even though John Venn
John Venn, FRS, FSA (4 August 1834 – 4 April 1923) was an English mathematician, logician and philosopher noted for introducing Venn diagrams, which are used in logic, set theory, probability, statistics, and computer science. In 1866, ...

originally devised them as part of a procedure to assess the validity of inference
Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word ''infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in ...

s in term logic
In philosophy, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, ...

).
Set theory is used to introduce students to logical operators (NOT, AND, OR), and semantic or rule description (technically intensional definition
In logic, extensional and intensional definitions are two key ways in which the objects, concepts, or referents a term refers to can be defined. They give meaning or denotation to a term.
Intensional definition
An intensional definition giv ...

) of sets (e.g. "months starting with the letter ''A''"), which may be useful when learning computer programming
Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as anal ...

, since boolean logic
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas in e ...

is used in various programming language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.
The description of a programming ...

s. Likewise, sets and other collection-like objects, such as multiset
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that e ...

s and list
A ''list'' is any set of items in a row. List or lists may also refer to:
People
* List (surname)
Organizations
* List College, an undergraduate division of the Jewish Theological Seminary of America
* SC Germania List, German rugby uni ...

s, are common datatype
In computer science and computer programming, a data type (or simply type) is a set of possible values and a set of allowed operations on it. A data type tells the compiler or interpreter how the programmer intends to use the data. Most progra ...

s in computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includ ...

and programming.
In addition to that, sets are commonly referred to in mathematical teaching when talking about different types of numbers (the sets $\backslash mathbb$ of natural numbers
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...

, $\backslash mathbb$ of integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...

s, $\backslash mathbb$ of mathematical function
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the funct ...

as a relation from one set (the domain) to another set (the range
Range may refer to:
Geography
* Range (geographic), a chain of hills or mountains; a somewhat linear, complex mountainous or hilly area (cordillera, sierra)
** Mountain range, a group of mountains bordered by lowlands
* Range, a term used to i ...

).
See also

* Glossary of set theory *Class (set theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like ...

* List of set theory topics
* Relational model
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of t ...

– borrows from set theory
* Notes

References

* *Further reading

* * * * * *External links

* Daniel CunninghamSet Theory

article in the ''

Internet Encyclopedia of Philosophy
The ''Internet Encyclopedia of Philosophy'' (''IEP'') is a scholarly online encyclopedia, dealing with philosophy, philosophical topics, and philosophers. The IEP combines open access publication with peer reviewed publication of original paper ...

''.
* Jose Ferreiros"The Early Development of Set Theory"

article in the '' tanford Encyclopedia of Philosophy'. * Foreman, Matthew, Akihiro Kanamori, eds.

Handbook of Set Theory

'. 3 vols., 2010. Each chapter surveys some aspect of contemporary research in set theory. Does not cover established elementary set theory, on which see Devlin (1993). * * * Schoenflies, Arthur (1898)

Mengenlehre

in Klein's encyclopedia. * * {{Authority control S Formal methods Georg Cantor