Astrophysical jet
   HOME

TheInfoList



OR:

An astrophysical jet is an
astronomical Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxi ...
phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, astrophysical jets become relativistic jets as they show effects from
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
. The formation and powering of astrophysical jets are highly complex phenomena that are associated with many types of high-energy astronomical sources. They likely arise from dynamic interactions within accretion disks, whose active processes are commonly connected with compact central objects such as black holes,
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s or pulsars. One explanation is that tangled magnetic fields are organised to aim two diametrically opposing beams away from the central source by angles only several degrees wide Jets may also be influenced by a
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
effect known as
frame-dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses ca ...
. Most of the largest and most active jets are created by
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s (SMBH) in the centre of active galaxies such as quasars and
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
or within galaxy clusters. Such jets can exceed millions of
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
s in length. Other astronomical objects that contain jets include cataclysmic variable stars, X-ray binaries and
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
s (GRB). Jets on a much smaller scale (~parsecs) may be found in star forming regions including
T Tauri star T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and ide ...
s and
Herbig–Haro object Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionised gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometres per s ...
s; these objects are partially formed by the interaction of jets with the interstellar medium.
Bipolar outflow A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae). Protostars In t ...
s may also be associated with
protostar A protostar is a very young star that is still gathering mass from its parent molecular cloud. The protostellar phase is the earliest one in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 50 ...
s, or with evolved post-AGB stars,
planetary nebula A planetary nebula (PN, plural PNe) is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelate ...
e and
bipolar nebula A bipolar nebula is a type of nebula characterized by two lobes either side of a central star. About 10-20% of planetary nebulae are bipolar. Formation Though the exact causes of this nebular structure are not known, it is often thought to impl ...
e.


Relativistic jets

Relativistic jets are beams of ionised matter accelerated close to the speed of light. Most have been observationally associated with central black holes of some active galaxies,
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
or quasars, and also by galactic stellar black holes,
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s or pulsars. Beam lengths may extend between several thousand, hundreds of thousands or millions of parsecs. Jet velocities when approaching the speed of light show significant effects of the special theory of relativity; for example,
relativistic beaming Relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of li ...
that changes the apparent beam brightness. Massive central black holes in galaxies have the most powerful jets, but their structure and behaviours are similar to those of smaller galactic neutron stars and black holes. These SMBH systems are often called
microquasar A microquasar, the smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star. The matter being pulled from the companion star forms an accretion disk around the black hole ...
s and show a large range of velocities. SS 433 jet, for example, has a mean velocity of 0.26 c. Relativistic jet formation may also explain observed
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
s. Mechanisms behind the composition of jets remain uncertain, though some studies favour models where jets are composed of an electrically neutral mixture of nuclei,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s, and positrons, while others are consistent with jets composed of positron–electron plasma.Electron–positron Jets Associated with Quasar 3C 279
/ref> Trace nuclei swept up in a relativistic positron–electron jet would be expected to have extremely high energy, as these heavier nuclei should attain velocity equal to the positron and electron velocity.


Rotation as possible energy source

Because of the enormous amount of energy needed to launch a relativistic jet, some jets are possibly powered by spinning black holes. However, the frequency of high-energy astrophysical sources with jets suggest combinations of different mechanisms indirectly identified with the energy within the associated accretion disk and X-ray emissions from the generating source. Two early theories have been used to explain how energy can be transferred from a black hole into an astrophysical jet: * Blandford–Znajek process. This theory explains the extraction of energy from magnetic fields around an accretion disk, which are dragged and twisted by the spin of the black hole. Relativistic material is then feasibly launched by the tightening of the field lines. * Penrose mechanism. Here energy is extracted from a rotating black hole by frame dragging, which was later theoretically proven to be able to extract relativistic particle energy and momentum, and subsequently shown to be a possible mechanism for jet formation. This effect includes using general relativistic gravitomagnetism.


Relativistic jets from neutron stars

Jets may also be observed from spinning neutron stars. An example is pulsar IGR J11014-6103, which has the largest jet so far observed in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, and whose velocity is estimated at 80% the speed of light (0.8''c''). X-ray observations have been obtained but there is no detected radio signature nor accretion disk. Initially, this pulsar was presumed to be rapidly spinning but later measurements indicate the spin rate is only 15.9 Hz. Such a slow spin rate and lack of accretion material suggest the jet is neither rotation nor accretion powered, though it appears aligned with the pulsar rotation axis and perpendicular to the pulsar's true motion.


Other images

File:Opo0113i.jpg, Illustration of the dynamics of a
proplyd A proplyd, short for ionized protoplanetary disk, is an externally illuminated photoevaporating protoplanetary disk around a young star. Nearly 180 proplyds have been discovered in the Orion Nebula. Images of proplyds in other star-forming regio ...
, including a jet File:NGC 5128.jpg,
Centaurus A Centaurus A (also known as NGC 5128 or Caldwell 77) is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable d ...
in x-rays showing the relativistic jet File:Onde-radioM87.jpg, The M87 jet seen by the Very Large Array in
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the ...
(the viewing field is larger and rotated with respect to the above image.) File:HST-3C66B-jet-O5BQ06010.gif, Hubble Legacy Archive Near- UV image of the relativistic jet in 3C 66B File:hs-2015-19-a-small web.jpg, Galaxy NGC 3862, an extragalactic jet of material moving at nearly the speed of light can be seen at the three o'clock position. File:Hubble Sees the Force Awakening in a Newborn Star (23807356641).jpg, Some of the jets in HH 24-26, which contains the highest concentration of jets known anywhere in the sky


See also

* Accretion disk *
Bipolar outflow A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae). Protostars In t ...
* Blandford–Znajek process * CGCG 049-033, elliptical galaxy located 600 million light-years from Earth, known for having the longest galactic jet discovered *
List of plasma physics articles This is a list of plasma physics topics. A * Ablation * Abradable coating * Abraham–Lorentz force * Absorption band * Accretion disk * Active galactic nucleus * Adiabatic invariant * ADITYA (tokamak) * Aeronomy * Afterglow plasma * Air ...


References


External links


NASA – Ask an Astrophysicist: Black Hole Bipolar Jets


* {{Cite arXiv , eprint=astro-ph/0107228v1 , last1=Blandford , first1=Roger , title=Compact Objects and Accretion Disks , last2=Agol , first2=Eric , last3=Broderick , first3=Avery , last4=Heyl , first4=Jeremy , last5=Koopmans , first5=Leon , last6=Lee , first6=Hee-Won , year=2001
Hubble Video Shows Shock Collision inside Black Hole JetArticle
Jet Plasma physics Black holes Jet, Astrophysical