HOME
The Info List - Asteraceae


--- Advertisement ---



Asteroideae Lindley Barnadesioideae Bremer & Jansen Carduoideae Sweet Cichorioideae Chevallier Corymbioideae Panero & Funk Famatinanthoideae S.E. Freire, Ariza & Panero Gochnatioideae Panero & Funk Gymnarrhenoideae Panero & Funk Hecastocleidoideae Panero & Funk Mutisioideae Lindley Pertyoideae Panero & Funk Stifftioideae Panero Wunderlichioideae Panero ">

Compositae Giseke Acarnaceae Link Ambrosiaceae Bercht. & J. Presl Anthemidaceae Bercht. & J. Presl Aposeridaceae Raf. Arctotidaceae Bercht. & J. Presl Artemisiaceae Martinov Athanasiaceae Martinov Calendulaceae Bercht. & J. Presl Carduaceae Bercht. & J. Presl Cassiniaceae Sch. Bip. Cichoriaceae Juss. Coreopsidaceae Link Cynaraceae Spenn. Echinopaceae Bercht. & J. Presl Eupatoriaceae Bercht. & J. Presl Helichrysaceae Link Inulaceae Bercht. & J. Presl Lactucaceae Drude Mutisiaceae Burnett Partheniaceae Link Perdiciaceae Link Senecionaceae Bercht. & J. Presl Vernoniaceae Burmeist.

Source: GRIN

ASTERACEAE or COMPOSITAE (commonly referred to as the ASTER, DAISY, COMPOSITE, or SUNFLOWER FAMILY) is a very large and widespread family of flowering plants (Angiospermae).

The family currently has 32,913 accepted species names, in 1,911 genera (list ) and 13 subfamilies. In terms of numbers of species, the Asteraceae are rivaled only by the Orchidaceae . (Which of the two families is actually larger is unclear, owing to uncertainty about exactly how many species exist in each family.) Many members have composite flowers in the form of flower heads (capitula or pseudanthia) surrounded by involucral bracts . When viewed from a distance, each capitulum may have the appearance of being a single flower. The name Asteraceae comes from the type genus _Aster_, from the Greek ἀστήρ, meaning star, and refers to the star-like form of the inflorescence. Compositae is an older (but still valid ) name which refers to the fact that the family is one of the few angiosperm families to have composite flowers.

Most members of Asteraceae are herbaceous, but a significant number are also shrubs, vines, or trees. The family has a worldwide distribution, from the polar regions to the tropics, colonizing a wide variety of habitats. It is most common in the arid and semiarid regions of subtropical and lower temperate latitudes. The Asteraceae may represent as much as 10% of autochthonous flora in many regions of the world.

Asteraceae is an economically important family, providing products such as cooking oils , lettuce , sunflower seeds , artichokes , sweetening agents , coffee substitutes and herbal teas . Several genera are of horticultural importance, including pot marigold, _ Calendula officinalis _, _Echinacea _ (cone flowers), various daisies, fleabane , chrysanthemums , dahlias , zinnias , and heleniums . Asteraceae are important in herbal medicine, including _ Grindelia _, yarrow , and many others. A number of species are considered invasive, including, most notably in North America, dandelion , which was originally introduced by European settlers who used the young leaves as a salad green.

The study of this family is known as synantherology .

CONTENTS

* 1 Etymology and pronunciation * 2 Distribution * 3 Taxonomy

* 4 Characteristics

* 4.1 Roots and stems * 4.2 Leaves

* 4.3 Flowers

* 4.3.1 Floral heads * 4.3.2 Floral structures

* 4.4 Fruits and seeds * 4.5 Metabolites

* 5 Evolution * 6 Ecology * 7 Uses * 8 Genera * 9 See also * 10 References * 11 External links

ETYMOLOGY AND PRONUNCIATION

The name Asteraceae (English: /ˌæstəˈreɪsi, -siˌaɪ, -siˌeɪ, -siˌiː/ ) comes to international scientific vocabulary from New Latin , from _Aster _, the type genus , + _-aceae_, a standardized suffix for plant family names in modern taxonomy. The genus name comes from the Classical Latin word _aster_, "star", which came from Ancient Greek ἀστήρ (astḗr), "star".

Compositae (an alternate name ) means "composite" and refers to the characteristic inflorescence , a special type of pseudanthium found in only a few other angiosperm families.

The vernacular name "daisy", widely applied to members of this family, is derived from the Old English name of daisy (_Bellis perennis _): _dægesege_, from _dæges eage_, meaning "day's eye". This is because the petals open at dawn and close at dusk.

DISTRIBUTION

Asteraceae species have a cosmopolitan distribution , and are found everywhere except Antarctica and the extreme Arctic. They are especially numerous in tropical and subtropical regions (notably Central America , eastern Brazil , the Mediterranean , the Levant part of the Middle East, southern Africa , central Asia , and southwestern China ).

TAXONOMY

Compositae, the original name for Asteraceae, were first described in 1792 by the German botanist Paul Dietrich Giseke . Traditionally, two subfamilies were recognised: Asteroideae (or Tubuliflorae) and Cichorioideae (or Liguliflorae). The latter has been shown to be extensively paraphyletic , and has now been divided into 12 subfamilies, but the former still stands. The phylogenetic tree presented below is based on Panero border:0;padding:0 0.2em;border-bottom:1px solid;vertical-align:bottom;text-align:center;">

BARNADESIOIDEAE : 9 genera, 93 species. South America , mainly the Andes .

FAMATINANTHOIDEAE : South America , 1 genus, 1 species.

MUTISIOIDEAE : 58 genera, 750 species. South America .

STIFFTIOIDEAE : 10 genera. South America .

WUNDERLICHIOIDEAE : 8 genera, 24 species. Mostly in Venezuela and Guyana

GOCHNATIOIDEAE : 4 or 5 genera, 90 species.

HECASTOCLEIDOIDEAE : Only _ Hecastocleis shockleyi _. Southwestern United States .

CARDUOIDEAE : 83 genera, 2,500 species. Worldwide.

PERTYOIDEAE : 5 or 6 genera, 70 species. Asia

GYMNARRHENOIDEAE : Two genera/species, _ Gymnarrhena micrantha _ ( Northern Africa , Middle East ) and _ Cavea tanguensis _ (Eastern Himalayas )

CICHORIOIDEAE : 224 genera, 3,200 species. Worldwide.

CORYMBIOIDEAE : Only the genus _ Corymbium _, with 9 species.

ASTEROIDEAE : 1,130 genera and 16,200 species. Worldwide.

It is noteworthy that the four subfamilies Asteroideae , Cichorioideae , Carduoideae and Mutisioideae contain 99% of the species diversity of the whole family (approximately 70%, 14%, 11% and 3% respectively).

Because of the morphological complexity exhibited by this family, agreeing on generic circumscriptions has often been difficult for taxonomists . As a result, several of these genera have required multiple revisions.

CHARACTERISTICS

Members of the Asteraceae are mostly herbaceous plants , but some shrubs, trees and climbers do exist. They are generally easy to distinguish from other plants, mainly because of their characteristic inflorescence and other shared characteristics. However, determining genera and species of some groups such as _Hieracium _ is notoriously difficult (see "damned yellow composite " for example).

ROOTS AND STEMS

Members of the Asteraceae generally produce taproots , but sometimes they possess fibrous root systems. Stems are herbaceous aerial branched cylindrical with glandular hairs generally erect but can be prostrate to ascending. Some species have underground stems in the form of caudices or rhizomes . These can be fleshy or woody depending on the species.

LEAVES

The leaves and the stems very often contain secretory canals with resin or latex (particularly common among the Cichorioideae). The leaves can be alternate , opposite , or whorled . They may be simple, but are often deeply lobed or otherwise incised , often conduplicate or revolute . The margins can be entire or lobed or toothed.

FLOWERS

Floral Heads

_ A typical Asteraceae flower head showing the individual flowers ( Bidens torta _) A flower head showing the individual flowers opening from the outside ( Chrysanthemum cultivar 'Bridesmaid')

In plants of the family Asteraceae, what appears to be a single flower is actually a cluster of much smaller flowers. The overall appearance of the cluster, as a single flower, functions in attracting pollinators in the same way as the structure of an individual flower in some other plant families. The older family name, Compositae, comes from the fact that what appears to be a single flower, is actually a _composite_ of smaller flowers. The "petals" or "sunrays" in a sunflower head are actually individual strap-shaped flowers called "ray flowers", and the "sun disk" is made of smaller circular shaped individual flowers called "disc flowers". The word "aster" means "star" in Greek, referring to the appearance of some family members, as a "star" surrounded by "rays". The cluster of flowers that may appear to be a single flower, is called a _head_. The entire head may move tracking the sun, like a "smart" solar panel, which maximizes reflectivity of the whole unit and can thereby attract more pollinators. At the base of the head, and surrounding the flowers before opening, is a bundle of sepal -like bracts or scales called _phyllaries_, which together form the _involucre_ that protects the individual flowers in the head before opening. The individual heads have the smaller individual flowers arranged on a round or dome-like structure called the _receptacle_. The flowers mature first at the outside, moving toward the center, with the youngest in the middle.

The individual flowers in a head have 5 fused petals (rarely 4), but instead of sepals, have threadlike, hairy, or bristly structures called _pappus _, which surround the fruit and can stick to animal fur or be lifted by wind, aiding in seed dispersal. The whitish fluffy head of a dandelion commonly blown on by children, is made of the pappus, with tiny seeds attached at the ends, whereby the pappus provides a parachute like structure to help the seed be carried away in the wind. Ray floret: A = ovary, B = pappus, C = anthers, D = ligule, E = style with stigmas Disc floret: A = ovary, B = pappus, C = anthers, D = style with stigmas

A _ray flower_ is a 3-tipped (3-lobed), strap-shaped, individual flower in the head of some members of the family Asteraceae. Sometimes a ray flower is 2-tipped (2-lobed). The corolla of the ray flower may have 2 tiny teeth opposite the 3-lobed strap, or tongue, indicating evolution by fusion from an originally 5-part corolla. Sometimes, the 3:2 arrangement is reversed, with 2 tips on the tongue, and 0 or 3 tiny teeth opposite the tongue. A _ligulate flower_ is a 5-tipped, strap-shaped, individual flower in the heads of other members. A _ligule_ is the strap-shaped tongue of the corolla of either a ray flower or of a ligulate flower. A _disk flower_ (or _disc flower_) is a radially symmetric (i.e., with identical shaped petals arranged in circle around the center) individual flower in the head, which is ringed by ray flowers when both are present. Sometimes ray flowers may be slightly off from radial symmetry, or weakly bilaterally symmetric, as in the case of desert pincushions _ Chaenactis fremontii _.

A _radiate head_ has disc flowers surrounded by ray flowers. A _ligulate head_ has all ligulate flowers. When a sunflower family flower head has only disc flowers that are sterile, male, or have both male and female parts, it is a _discoid head_. _Disciform heads_ have only disc flowers, but may have two kinds (male flowers and female flowers) in one head, or may have different heads of two kinds (all male, or all female). _Pistillate heads_ have all female flowers. _Staminate heads_ have all male flowers.

Sometimes, but rarely, the head contains only a single flower, or has a single flowered pistillate (female) head, and a multi-flowered male staminate (male) head.

Floral Structures

_ Flower diagram of Carduus _ (Carduoideae) shows (outermost to innermost): subtending bract and stem axis; fused calyx; fused corolla; stamens fused to corolla; gynoecium with two carpels and one locule

The distinguishing characteristic of Asteraceae is their inflorescence , a type of specialised, composite flower head or _pseudanthium _, technically called a calathium or _capitulum _, that may look superficially like a single flower. The _capitulum_ is a contracted raceme composed of numerous individual sessile flowers , called _florets_, all sharing the same receptacle .

A set of bracts forms an involucre surrounding the base of the capitulum. These are called "phyllaries", or "involucral bracts". They may simulate the sepals of the pseudanthium. These are mostly herbaceous but can also be brightly coloured (e.g. _ Helichrysum _) or have a scarious (dry and membranous) texture. The phyllaries can be free or fused, and arranged in one to many rows, overlapping like the tiles of a roof (_imbricate_) or not (this variation is important in identification of tribes and genera).

Each floret may be subtended by a bract, called a "palea" or "receptacular bract". These bracts are often called "chaff ". The presence or absence of these bracts, their distribution on the receptacle, and their size and shape are all important diagnostic characteristics for genera and tribes.

The florets have five petals fused at the base to form a corolla tube and they may be either actinomorphic or zygomorphic . _Disc florets_ are usually actinomorphic, with five petal lips on the rim of the corolla tube. The petal lips may be either very short, or long, in which case they form deeply lobed petals. The latter is the only kind of floret in the Carduoideae, while the first kind is more widespread. _Ray florets_ are always highly zygomorphic and are characterised by the presence of a _ligule_, a strap-shaped structure on the edge of the corolla tube consisting of fused petals. In the Asteroideae and other minor subfamilies these are usually borne only on florets at the circumference of the capitulum and have a 3+2 scheme — above the fused corolla tube, three very long fused petals form the ligule, with the other two petals being inconspicuously small. The Cichorioideae has only ray florets, with a 5+0 scheme — all five petals form the ligule. A 4+1 scheme is found in the Barnadesioideae. The tip of the ligule is often divided into teeth, each one representing a petal. Some marginal florets may have no petals at all (filiform floret).

The calyx of the florets may be absent, but when present is always modified into a pappus of two or more teeth, scales or bristles and this is often involved in the dispersion of the seeds. As with the bracts, the nature of the pappus is an important diagnostic feature.

There are usually five stamens . The filaments are fused to the corolla, while the anthers are generally connate (_syngenesious_ anthers), thus forming a sort of tube around the style (_theca_). They commonly have basal and/or apical appendages. Pollen is released inside the tube and is collected around the growing style, and then, as the style elongates, is pushed out of the tube (_nüdelspritze_).

The pistil consists of two connate carpels . The style has two lobes. Stigmatic tissue may be located in the interior surface or form two lateral lines. The ovary is inferior and has only one ovule , with basal placentation .

FRUITS AND SEEDS

In members of the Asteraceae the fruit is achene -like, and is called a _cypsela_ (plural _cypselae_). Although there are two fused carpels , there is only one locule, and only one seed per fruit is formed. It may sometimes be winged or spiny because the pappus , which is derived from calyx tissue often remains on the fruit (for example in dandelion ). In some species, however, the pappus falls off (for example in _ Helianthus _). Cypsela morphology is often used to help determine plant relationships at the genus and species level. The mature seeds usually have little endosperm or none.

METABOLITES

In Asteraceae, the energy store is generally in the form of inulin rather than starch. They produce iso/chlorogenic acid , sesquiterpene lactones , pentacyclic triterpene alcohols, various alkaloids , acetylenes (cyclic, aromatic, with vinyl end groups), tannins . They have terpenoid essential oils which never contain iridoids .

EVOLUTION

The oldest known fossils of members of Asteraceae are pollen grains from the Late Cretaceous of Antarctica , dated to ∼76–66 Mya ( Campanian to Maastrichtian ) and assigned to the extant genus _ Dasyphyllum _. Barreda, _et al._ (2015) estimated that the crown group of Asteraceae evolved at least 85.9 Mya (Late Cretaceous, Santonian ) with a stem node age of 88-89 Mya (Late Cretaceous, Coniacian ).

It is still unknown whether the precise cause of their great success was the development of the highly specialised capitulum, their ability to store energy as fructans (mainly inulin ), which is an advantage in relatively dry zones, or some combination of these and possibly other factors.

ECOLOGY

_ Anemochory in Carlina _ _ Epizoochory in Bidens tripartita _

Asteraceans are especially common in open and dry environments.

Many members of Asteraceae are pollinated by insects, which explains their value in attracting beneficial insects , but anemophyly is also present (e.g. _Ambrosia _, _Artemisia _). There are many apomictic species in the family.

Seeds are ordinarily dispersed intact with the fruiting body, the cypsela. _Anemochory _ (wind dispersal) is common, assisted by a hairy pappus. _Epizoochory _ is another common method, in which the dispersal unit, a single cypsela (e.g. _ Bidens _) or entire capitulum (e.g. _ Arctium _) has hooks, spines or some structure to attach to the fur or plumage (or even clothes, as in the photo) of an animal just to fall off later far from its mother plant.

USES

Commercially important plants in Asteraceae include the food crops _ Lactuca sativa _ (lettuce), _ Cichorium _ (chicory), _Cynara scolymus _ (globe artichoke), _ Helianthus annuus _ (sunflower ), _Smallanthus sonchifolius _ (yacón), _ Carthamus tinctorius _ (safflower) and _ Helianthus tuberosus _ (Jerusalem artichoke). Plants are used as herbs and in herbal teas and other beverages. Chamomile, for example, comes from two different species: the annual _ Matricaria chamomilla _ (German chamomile) and the perennial _ Chamaemelum nobile _ (Roman chamomile). _ Calendula _ (known as pot marigold) is grown commercially for herbal teas and potpourri . Echinacea is used as a medicinal tea. The wormwood genus _Artemisia _ includes absinthe (_A. absinthium_) and tarragon (_A. dracunculus_). Winter tarragon (_ Tagetes lucida _), is commonly grown and used as a tarragon substitute in climates where tarragon will not survive.

Many members of the family are grown as ornamental plants for their flowers, and some are important ornamental crops for the cut flower industry. Some examples are _ Chrysanthemum _, _ Gerbera _, _Calendula _, _ Dendranthema _, _ Argyranthemum _, _ Dahlia _, _ Tagetes _, _Zinnia _, and many others.

Several species of this family possess medicinal properties. These are medically important in areas that don't have access to Western medicine.

Members of the family are also commonly featured in medical and phytochemical journals because the sesquiterpene lactone compounds contained within them are an important cause of allergic contact dermatitis . Allergy to these compounds is the leading cause of allergic contact dermatitis in florists in the US. Pollen from ragweed _Ambrosia _ is among the main causes of so-called hay fever in the United States.

Asteraceae are also used for some industrial purposes. Marigold (_ Tagetes patula _) is common in commercial poultry feeds and its oil is extracted for uses in cola and the cigarette industry.

Several members of the family are copious nectar producers and are useful for evaluating pollinator populations during their bloom. _ Centaurea _ (knapweed), _ Helianthus annuus _ (domestic sunflower ), and some species of _ Solidago _ (goldenrod) are major "honey plants " for beekeepers . _Solidago_ produces relatively high protein pollen , which helps honey bees over winter.

Some members of Asteraceae are economically important as weeds. Notable in the United States are _ Senecio jacobaea _ (ragwort), _ Senecio vulgaris _ (groundsel), and _ Taraxacum _ (dandelion).

The genera _ Chrysanthemum _, _ Pulicaria _, _ Tagetes _, and _Tanacetum _ contain species with useful insecticidal properties.

_ Parthenium argentatum _ (guayule) is a source of hypoallergenic latex .

GENERA

Main article: List of Asteraceae genera

SEE ALSO

* Terminology for Asteraceae

REFERENCES

* ^ _A_ _B_ _C_ Viviana D. Barreda, Luis Palazzesi, Maria C. Tellería, Eduardo B. Olivero, J. Ian Raine and Félix Forest (2015). "Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica" . _Proceedings of the National Academy of Sciences of the United States of America_. 112: 10989–10994. PMC 4568267  _. PMID 26261324 . doi :10.1073/pnas.1423653112 . CS1 maint: Uses authors parameter (link ) * ^ Tropicos.org. " Asteraceae Bercht. & J. Presl". Missouri Botanical Garden. Retrieved 14 July 2017. * ^ Germplasm Resources Information Network (GRIN) . "Family: Asteraceae Bercht. & J. Presl, nom. cons.". Taxonomy for Plants_. USDA , ARS , National Genetic Resources Program, National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved 12 June 2008. * ^ Great Basin Wildflowers, Laird R. Blackwell, 2006, p. 275 * ^ _A_ _B_ _C_ _D_ _E_ P.F. Stevens (2001). " Angiosperm Phylogeny Website". _ Angiosperm Phylogeny Website_. * ^ Jeffrey, C. 2007. Compositae: Introduction with key to tribes. Pages 61–87 in Families and Genera of Vascular Plants, vol. VIII, Flowering Plants, Eudicots, Asterales (J. W. Kadereit and C. Jeffrey, eds.). Springer-Verlag, Berlin * ^ "The Plant List: Compositae". Royal Botanic Gardens Kew and Missouri Botanic Garden. Retrieved 18 November 2016. * ^ _A_ _B_ Panero, J.L., Crozier, B.S. _ Tree of Life – Asteraceae_ * ^ _A_ _B_ "International Code of Nomenclature for algae, fungi, and plants – Article 18.5". _iapt-taxon.org_. * ^ _A_ _B_ Barkely, T.M., Brouillet, L., Strother, J.L. (2006) _ Flora of North America – Asteraceae"_ * ^ "Phytochemical and Ethnobotanical Databases". _ars-grin.gov_. * ^ "dandelion Taraxacum officinale". _Invasive Plant Atlas of the United States_. Retrieved 10 September 2012. * ^ _A_ _B_ Merriam-Webster , _Merriam-Webster\'s Unabridged Dictionary_, Merriam-Webster. * ^ Solbrig, O.T. (1963) Subfamilial Nomenclature of Compositae. _Taxon_ 12: 229–235 JSTOR 1216917 * ^ Panero, J.L.; Funk, V.A. (2002). "Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae)". _Proc. Biol. Soc. Wash_. 115: 909–922. * ^ _A_ _B_ Panéro, José J.; Freire, Susana E.; Ariza Espinar, Luis; Crozier, Bonnie S.; Barboza, Gloria E.; Cantero, Juan J. (2014). "Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae". _Molecular Phylogenetics and Evolution_. 80 (1): 43–53. doi :10.1016/j.ympev.2014.07.012 . Retrieved 2017-01-03. * ^ Zhi-Xi Fu; Bo-Han Jiao; Bao Nie; Tiangang Gao (2016). "A comprehensive generic‐level phylogeny of the sunflower family: Implications for the systematics of Chinese Asteraceae". _Journal of Systematics and Evolution_. 54 (4): 416–437. doi :10.1111/jse.12216 . Retrieved 2017-01-23. * ^ Funk, Vicki A.; Fragman-Sapir, Ori (2009). "22. Gymnarrheneae (Gymnarrhenoideae)". In V.A. Funk, A. Susanna, T. Stuessy, R. Bayer. _Systematics, Evolution, and Biogeography of Compositae_ (PDF). Vienna: International Association for Plant Taxonomy . pp. 327–332. Retrieved 2016-12-27. CS1 maint: Uses editors parameter (link ) * ^ _A_ _B_ _C_ _D_ Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2007) Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Sunderland. * ^ _A_ _B_ _C_ _D_ _E_ _F_ _G_ _H_ _I_ _J_ _K_ _L_ _M_ _N_ _O_ _P_ _Q_ _R_ _S_ _T_ _U_ _V_ _W_ _X_ _Y_ Sia Morhardt, Emil Morhardt, California Desert Flowers, University of California Press, pp. 29–32 * ^ _A_ _B_ _C_ _D_ Pam MacKay, Mojave Desert Wildflowers, illustration p. 35 * ^ Beentje, Henk (2010). _The Kew Plant Glossary, an illustrated dictionary of plant terms_. Richmond, U.K.: Kew Publishing. ISBN 9781842464229 . * ^ Usher, G. (1966) A dictionary of botany, including terms used in bio-chemistry, soil science, and statistics. LCCN 66-602544 * ^ McKenzie, R.J., Samuel, J., Muller, E.M., Skinner, A.K.W., Barker, N.P. (2005). "Morphology Of Cypselae In Subtribe Arctotidinae (Compositae–Arctotideae) And Its Taxonomic Implications". _Annals of the Missouri Botanical Garden_. 92 (4): 569–594. JSTOR 40035740 . CS1 maint: Uses authors parameter (link ) * ^ _A_ _B_ _C_ _D_ _E_ _F_ Rajendra Singh; et al. (2015), "Diversity of Host Plants of Aphids (Homoptera: Aphididae) Infesting Asteraceae in India", _International Journal of Zoological Investigations_, 1 (2): 137–167 CS1 maint: Explicit use of et al. (link ) * ^ Odom, R.B., James, W.D., Berger, T.G. (2000). _Andrews' Diseases of the Skin: Clinical Dermatology_. W.B. Saunders Company. pp. 1135 pages. ISBN 0-7216-5832-6 . CS1 maint: Uses authors parameter (link ) * ^ Asthma and Allergy Foundation of America. _ Ragweed Allergy_

EXTERNAL LINKS

_ Wikimedia Commons has media related to ASTERACEAE _.

.