Asparagine synthetase
   HOME

TheInfoList



OR:

Asparagine synthetase (or aspartate-ammonia ligase) is a chiefly cytoplasmic enzyme that generates
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
from aspartate. This amidation reaction is similar to that promoted by
glutamine synthetase Glutamine synthetase (GS) () is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine: Glutamate + ATP + NH3 → Glutamine + ADP + phosphate Glutam ...
. The enzyme is ubiquitous in its distribution in mammalian organs, but basal expression is relatively low in tissues other than the exocrine pancreas. Above average presence of asparagine synthetase in certain
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
strains has been linked to be a significant contributing factor of chemotherapy resistance, particularly to the chemotherapy drug, L-asparaginase.


Structure

''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Esc ...
'' derived asparagine synthetase is a dimeric protein with each subunit folding into two distinct domains. The N-terminal region consists of two layers of six-stranded antiparallel ''β''-sheets between which is the active site responsible for the hydrolysis of
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
. The C-terminal domain consists of a five-stranded parallel ''β''-sheet flanked on either side by ''α''-helices. This domain is responsible for the binding of both Mg2+ATP and aspartate. These two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic, nonpolar amino acid residues. Structural characterization of asparagine synthetase from mammalian sources have been difficult due to the low abundance and instability of the enzyme during purification procedures.


Mechanism

Using information from ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Esc ...
'' derived asparagine synthetase, some basic mechanisms of the enzyme have been understood. The N-terminal active site catalyzes glutamine hydrolysis to yield glutamate and
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
. The C-terminal active site catalyzes activation of the side-chain carboxylate of aspartate to form an electrophilic intermediate, β-aspartyl-AMP (βAspAMP) 1, and inorganic
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P–O–P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate (Na2H2P2O7) and tetrasodium pyrophosphate (Na4P2O7), among othe ...
( PPi). The tunnel that links the two active sites allows for the passage of an ammonia molecule to act as a common intermediate to couple the two half-reactions carried out in the independent active sites of the enzyme. Thus, after being released in, and channeled from, the glutaminase site, the ammonia molecule attacks the bound βAspAMP 1 to give asparagine and
AMP #REDIRECT Amp {{Redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
via a tetrahedral intermediate.


Function

In plants, inorganic
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
is taken up from the environment in forms of nitrate or ammonium. Assimilation of this nitrogen into asparagine for use in nitrogen recycling, transport, and storage is an essential process for plant development, making asparagine synthetase vital to maintaining these asparagine reserves. Specific events in development which depend on asparagine synthetase are nitrogen mobilization in germinating seeds, nitrogen recycling and flow in vegetative cells in response to biotic and abiotic stresses, and nitrogen remobilization from source to sink organs. In mammals, asparagine synthetase expression has been found to be linked to cell growth, and its
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
content is linked to changes in the cell cycle. Hamster BHK ''ts11'' cells produce an inactive asparagine synthetase enzyme, and this loss of asparagine synthetase activity directly led to
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
arrest in the cells as a consequence of a depletion of cellular asparagine. Upregulation of asparagine synthetase mRNA was observed as well in these hamster cells. Other experiments demonstrated that
quiescent Quiescence (/kwiˈɛsəns/) is a state of quietness or inactivity. It may refer to: * Quiescence search, in game tree searching (adversarial search) in artificial intelligence, a quiescent state is one in which a game is considered stable and unl ...
rat thyroid cells entering S phase as a result of thyroid-stimulating hormone treatment was matched with a concurrent increase in asparagine synthetase mRNA content.


Classes

There seem to be two major groups of asparagine synthetase: * Majority of prokaryotic isolated enzymes (''asnA'') utilize ammonia as the sole nitrogen source. * Eukaryotic isolated and some prokaryotic isolated enzymes (''asnB'') utilize glutamine as the preferred nitrogen source, although these enzymes can also employ ammonia as an alternate substrate. The human glutamine-dependent AS is encoded by a single gene located in region q21.3 on chromosome 7. The lack of ammonia-dependent asparagine synthetase in eukaryotes is presumably because of the need to maintain cellular concentrations of ammonia at very low levels.


Clinical significance


Cancer


Leukemia

Cancerous cells exhibit rapid growth and cell division and subsequently have an increased nutritional need. The particularly low-level expression of asparagine synthetase in primary acute lymphoblastic leukemia (
ALL All or ALL may refer to: Language * All, an indefinite pronoun in English * All, one of the English determiners * Allar language (ISO 639-3 code) * Allative case (abbreviated ALL) Music * All (band), an American punk rock band * ''All'' (All al ...
) and numerous ALL cell lines, as compared to that of normal cells, makes asparagine depletion an effective method of treatment due to the cells' unusual dependency on circulating serum asparagine as a necessary nutrition for growth. As a result, L-asparaginase is a common chemotherapy drug utilized in the treatment of ALL and may have applications in other asparagine synthetase negative cancers, such as lymphomas, due to its aspariginase activity to deplete serum asparagine. This depletion of serum asparagine leads to a subsequent rapid efflux of cellular asparagine, which is immediately acted upon and destroyed by the L-asparaginase as well. Due to the transient response from these susceptible cancers in reaction to the asparagine depletion, tumor growth is significantly inhibited due to nutritional deficiency. Most somatic cells express sufficient basal amounts of asparagine synthetase to counteract this asparagine starvation and survive the effects of L-asparaginase. In addition, these normal cells are able to upregulate their expression of asparagine synthetase in response to the asparagine depletion, further countering some of the toxic effects of the medication on normal cell activity, a desirable trait for chemotherapy drugs. However, the opposite effect is visible in cases of asparaginase resistant cancers. In these resistant cancers, the effect of blood asparagine depletion through L-asparaginase instead leads to significant asparagine synthetase overexpression to compensate, effectively nullifying the effect of the chemotherapy drug. For example, in mouse models, 24 hours after exposure to L-asparaginase, tumors resistant to the depletion responded with 5- to 19-fold increases in asparagine synthetase expression. These resistant tumors also inherently express higher levels of asparagine synthetase activity, even without the application of L-asparaginase to drive further expression. Similar trends are often seen in human studies as well, with high levels of asparagine synthetase activity being detected in asparaginase-resistant cases of treatment as compared with the negligible activity of susceptible cases. As seen in ''in vitro'' studies of resistant human leukemia cell lines, even six weeks after the removal of asparagine depleting factors, the increased level of expression of asparagine synthetase failed to return to a basal state, instead remaining elevated and retaining continued drug resistance. While the mechanisms underlying the sustained over-expression of ASNS have not been reported in these studies, transcriptome profiling of two T-ALL patients that have relapsed after L-asparaginase treatment revealed a recurrent promoter swap with KMT2E leading to ASNS over-expression and L-asparaginase resistance. It has been further demonstrated in mouse model systems that repeated subculturing of L-asparaginase sensitive tumor cells in sublethal concentrations of L-asparaginase could eventually make them resistant, a potential worry of lower dose chemotherapy treatments effectively encouraging resistant cell development.


Potential biomarker for ovarian cancer

A correlation between L-asparaginase efficacy and asparagine synthetase protein levels in a number of human ovarian cell lines has been observed. As mentioned above, this result confirmed similar observations in human leukemia cell lines. Hence asparagine synthetase might be used as a biomarker in ovarian cancer screening and potential treatment.


Potential role in solid tumor metastasis

An epithelial to mesenchymal transition was mimicked in metastatic cells by adapting PC-3 prostate cancer cells from adherent to suspension culture and then examined to investigate changes in gene expression concurrent with this adaption to suspension. It was found that the asparagine synthetase expression was sixfold greater in the suspension cells than in the adherent cells. In xenografts from a human breast cancer cell line in an established metastatic mouse model, asparagine synthetase was elevated in circulating tumor cells isolated from the mouse blood compared with the parental cell line. When these circulating tumor cells were returned to an ''in vitro'' culture and exposed to hypoxia, they showed higher basal expression and greater induction of asparagine synthetase than their parental cell line. These circulating tumor cells were also found to have an increased capacity for colony formation in soft agar assays under hypoxic conditions and grew faster when reimplanted as xenografts. The increased prevalence of asparaginase synthetase in the metastatic cells suggests that its activity may be beneficial for circulating tumor cell survival.


Trivia

Guinea pigs have some of the highest levels of naturally expressing asparagine synthetase due to the fact that their serum inherently containing detectable levels of L-asparaginase.


References


External links

* {{Amino acid metabolism enzymes Biomarkers