Array of Low Energy X-ray Imaging Sensors
   HOME

TheInfoList



OR:

The Array of Low Energy X-ray Imaging Sensors (ALEXIS, also known as P89-1B, COSPAR 1993-026A, SATCAT 22638)
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observe ...
featured curved mirrors whose multilayer coatings reflected and focused low-energy
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s or extreme
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
(EUV) light the way
optical telescope An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electro ...
s focus visible light. The satellite and payloads were funded by the
United States Department of Energy The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and manages the research and development of nuclear power and nuclear weapons in the United Stat ...
and built by
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
(LANL) in collaboration with
Sandia National Laboratories Sandia National Laboratories (SNL), also known as Sandia, is one of three research and development laboratories of the United States Department of Energy's National Nuclear Security Administration (NNSA). Headquartered in Kirtland Air Force Ba ...
and the
University of California The University of California (UC) is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, Irvine, Los Angeles, Merced, Riverside, San Diego, San Francisco, ...
-Space Sciences Lab. The satellite bus was built by AeroAstro, Inc. of Herndon, VA. The Launch was provided by the
United States Air Force The United States Air Force (USAF) is the air service branch of the United States Armed Forces, and is one of the eight uniformed services of the United States. Originally created on 1 August 1907, as a part of the United States Army Signal ...
Space Test Program on a
Pegasus Pegasus ( grc-gre, Πήγασος, Pḗgasos; la, Pegasus, Pegasos) is one of the best known creatures in Greek mythology. He is a winged divine stallion usually depicted as pure white in color. He was sired by Poseidon, in his role as hor ...
Booster on April 25, 1993. The mission was entirely controlled from a small groundstation at LANL.


Features

ALEXIS scanned half the sky with its three paired sets of EUV telescopes, although it could not locate any events with high resolution. Ground-based optical astronomers could look for visual counterparts to the EUV transients seen by ALEXIS by comparing observations made at two different times. Large telescopes, with their small fields of view, cannot quickly scan a large enough piece of the sky to effectively observe transients seen by ALEXIS, but amateur equipment is well suited to the task. Participants in the ALEXIS project combed the ALEXIS data for the coordinates of a likely current transient, then trained their telescopes and observe the area. There were six EUV telescopes which were arranged in three co-aligned pairs which cover three overlapping 33° fields-of-view. At each rotation of the satellite, ALEXIS monitored the entire anti-solar hemisphere. Each telescope consisted of a spherical mirror with a Mo-Si layered synthetic microstructure (LSM) or Multilayer coating, a curved profile microchannel plate detector located at the telescope's prime focus, a UV background-rejecting filter, electron rejecting magnets at the telescope aperture, and image processing readout electronics. The geometric collecting area of each telescope was about 25 cm2, with spherical aberration limiting resolution to about 0.25°s. Analysis of the pre-flight x-ray throughput calibration data indicated that the peak on-axis effective collecting area for each telescope's response function ranges from 0.25 to 0.05 cm2. The peak area-solid angle product response function of each telescope ranged from 0.04 to 0.015 cm2-sr. The spacing of the molybdenum and silicon layers on each telescope's mirror was the primary determinant of the telescope's photon energy response function. The ALEXIS multilayer mirrors also employed a "wavetrap" feature to significantly reduce the mirror's reflectance for He II 304 Angstrom geocoronal radiation which can be a significant background source for space borne EUV telescopes. These mirrors, produced by Ovonyx, Inc., were highly curved yet have been shown to have very uniform multilayer coatings and hence have very uniform EUV reflecting properties over their entire surfaces. The efforts in designing, producing and calibrating the ALEXIS telescope mirrors have been previously described in Smith et al., 1990. ALEXIS weighed 100 pounds, used 45 watts, and produced 10 kilobits/second of data. Position and time of arrival were recorded for each detected photon. ALEXIS was always in a survey-monitor mode, with no individual source pointings. It was suited for simultaneous observations with ground-based observers who prefer to observe sources at opposition. Coordinated observations needed not be arranged before the fact, because most sources in the anti-Sun hemisphere were observed and archived. ALEXIS was tracked from a single ground station in Los Alamos. Between ground station passes, data was stored in an on-board solid state memory of 78 Megabytes. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, complemented the scanners on
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
's
Extreme Ultraviolet Explorer The Extreme Ultraviolet Explorer (EUVE or Explorer 67) was a NASA space telescope for ultraviolet astronomy. EUVE was a part of NASA's Explorer spacecraft series. Launched on 7 June 1992. With instruments for ultraviolet (UV) radiation between ...
(EUVE) and the
ROSAT ROSAT (short for Röntgensatellit; in German X-rays are called Röntgenstrahlen, in honour of Wilhelm Röntgen) was a German Aerospace Center-led satellite X-ray telescope, with instruments built by West Germany, the United Kingdom and the Uni ...
EUV Wide Field Camera (WFC), which were sensitive, narrow field-of-view, broad-band survey experiments. ALEXIS's results also highly complemented the data from EUVE's spectroscopy instrument. ALEXIS's scientific goals were to: *Map the diffuse background in three emission line bands with the highest angular resolution to date, *Perform a narrow-band survey of point sources, *Search for transient phenomena in the ultrasoft X-ray band, and *Provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars.


End of mission

On 29 April 2005, after 12 years in orbit, the ALEXIS satellite reached the end of its mission and was decommissioned. The satellite exceeded expectations by operating well past its one year design life.


See also

* 1993 in spaceflight *


References

{{Use American English, date=January 2014 Spacecraft launched in 1993 Derelict satellites orbiting Earth Space telescopes X-ray telescopes Spacecraft launched by Pegasus rockets