The Info List - Arabic Numerals

--- Advertisement ---


ARABIC NUMERALS, also called HINDU–ARABIC NUMERALS are the ten digits : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, based on the Hindu–Arabic numeral system , the most common system for the symbolic representation of numbers in the world today. In this numeral system , a sequence of digits such as "975" is read as a single number, using the position of the digit in the sequence to interpret its value. The symbol for zero is the key to the effectiveness of the system, which was developed by ancient mathematicians in the Indian subcontinent around AD 500.

The system was adopted by Arabic
mathematicians in Baghdad
and passed on to the Arabs farther west. There is some evidence to suggest that the numerals in their current form developed from Arabic
letters in the Maghreb
, the western region of the Arab world . The current form of the numerals developed in North Africa, distinct in form from the Indian and Eastern Arabic numerals . It was in the North African city of Bejaia
that the Italian scholar Fibonacci first encountered the numerals; his work was crucial in making them known throughout Europe and then further to the Europeans who spread it worldwide. The use of Arabic
numerals spread around the world through European trade, books and colonialism .

The term _ Arabic
numerals_ is ambiguous. It most commonly refers to the numerals widely used in Europe and the Americas; to avoid confusion, Unicode calls these _European digits_. _ Arabic
numerals_ is also the conventional name for the entire family of related numerals of Arabic
and Indian numerals . It may also be intended to mean the numerals used by Arabs, in which case it generally refers to the Eastern Arabic
numerals. It would be more appropriate to refer to the _ Arabic
numeral system_, where the value of a digit in a number depends on its position.

Although the phrase " Arabic
numeral" is frequently capitalized, it is sometimes written in lower case: for instance, in its entry in the _ Oxford English Dictionary _, which helps to distinguish it from " Arabic
numerals" as the East Arabic
numerals specific to the Arabs.


* 1 History

* 1.1 Origins

* 1.1.1 Popular myths

* 1.2 Adoption in Europe * 1.3 Adoption in Russia * 1.4 Adoption in China

* 2 Evolution of symbols * 3 See also * 4 References * 5 Sources * 6 Further reading * 7 External links



Main article: History of the Hindu–Arabic numeral system

The decimal Hindu–Arabic numeral system was developed in India by around AD 700. The development was gradual, spanning several centuries, but the decisive step was probably provided by Brahmagupta 's formulation of zero as a number in AD 628. The system was revolutionary by including zero in positional notation , thereby limiting the number of individual digits to ten. It is considered an important milestone in the development of mathematics. One may distinguish between this positional _system_, which is identical throughout the family, and the precise glyphs used to write the numerals, which varied regionally.

The glyphs most commonly used in conjunction with the Latin script since early modern times are 0 1 2 3 4 5 6 7 8 9 . The first universally accepted inscription containing the use of the 0 glyph in India is first recorded in the 9th century, in an inscription at Gwalior
in Central India dated to 870. Numerous Indian documents on copper plates exist, with the same symbol for zero in them, dated back as far as the 6th century AD, but their dates are uncertain. Inscriptions in Indonesia
and Cambodia
dating to AD 683 have also been found. Brahmi numerals (lower row) in India in the 1st century AD The numerals used in the Bakhshali manuscript
Bakhshali manuscript
, dated to sometime between the 3rd and 7th century AD. Modern-day Arab
telephone keypad with two forms of Arabic
numerals: Western Arabic/European numerals on the left and Eastern Arabic numerals on the right

The numeral system came to be known to both the Persian mathematician Al-Khwarizmi , whose book _On the Calculation with Hindu
Numerals_ was written about 825 in Arabic
, and the Arab
mathematician Al-Kindi , who wrote four volumes, _On the Use of the Indian Numerals_ (_Ketab fi Isti'mal al-'Adad al-Hindi_) about 830. Their work was principally responsible for the diffusion of the Indian system of numeration in the Middle East and the West.

In the 10th century, Middle-Eastern mathematicians extended the decimal numeral system to include fractions , as recorded in a treatise by Syrian
mathematician Abu\'l-Hasan al-Uqlidisi in 952–953. The decimal point notation was introduced by Sind ibn Ali , who also wrote the earliest treatise on Arabic

A distinctive West Arabic
variant of the symbols begins to emerge around the 10th century in the Maghreb
and Al-Andalus , called _ghubar_ ("sand-table" or "dust-table") numerals, which are the direct ancestor of the modern Western Arabic
numerals used throughout the world. Ghubar numerals themselves are probably of Roman origin.

Popular Myths

Some popular myths have argued that the original forms of these symbols indicated their numeric value through the number of angles they contained, but no evidence exists of any such origin.


Adoption of the Hindu
numerals through the Arabs by Europe Woodcut showing the 16th century astronomical clock of Uppsala Cathedral , with two clockfaces, one with Arabic
and one with Roman numerals. A German manuscript page teaching use of Arabic numerals (Talhoffer Thott, 1459). At this time, knowledge of the numerals was still widely seen as esoteric, and Talhoffer presents them with the Hebrew alphabet and astrology . Late 18th-century French revolutionary "decimal" clockface.

In 825 Al-Khwārizmī wrote a treatise in Arabic, _On the Calculation with Hindu
Numerals_, which survives only as the 12th-century Latin translation, _Algoritmi de numero Indorum_. _Algoritmi_, the translator's rendition of the author's name, gave rise to the word _algorithm _ (Latin _algorithmus_, "calculation method").

The first mentions of the numerals in the West are found in the _ Codex Vigilanus _ of 976.

From the 980s, Gerbert of Aurillac (later, Pope Sylvester II ) used his position to spread knowledge of the numerals in Europe. Gerbert studied in Barcelona
in his youth. He was known to have requested mathematical treatises concerning the astrolabe from Lupitus of Barcelona
after he had returned to France.

Leonardo Fibonacci ( Leonardo of Pisa ), a mathematician born in the Republic of Pisa who had studied in Béjaïa (Bougie), Algeria
, promoted the Indian numeral system in Europe with his 1202 book _Liber Abaci _:

When my father, who had been appointed by his country as public notary in the customs at Bugia acting for the Pisan merchants going there, was in charge, he summoned me to him while I was still a child, and having an eye to usefulness and future convenience, desired me to stay there and receive instruction in the school of accounting. There, when I had been introduced to the art of the Indians' nine symbols through remarkable teaching, knowledge of the art very soon pleased me above all else and I came to understand it.

The numerals are arranged with their lowest value digit to the right, with higher value positions added to the left. This arrangement was adopted identically into the numerals as used in Europe. Languages written in the Latin alphabet run from left-to-right, unlike languages written in the Arabic
alphabet. Hence, from the point of view of the reader, numerals in Western texts are written with the highest power of the base first whereas numerals in Arabic
texts are written with the lowest power of the base first.

The reason the digits are more commonly known as " Arabic
numerals" in Europe and the Americas is that they were introduced to Europe in the 10th century by Arabic-speakers of North Africa, who were then using the digits from Libya to Morocco. Arabs, on the other hand, call the system " Hindu
numerals", referring to their origin in India. This is not to be confused with what the Arabs call the "Hindi numerals", namely the Eastern Arabic numerals (٠‎ - ١‎ - ٢‎ - ٣‎ -٤‎ - ٥‎ - ٦‎ - ٧‎ - ٨‎ - ٩‎) used in the Middle East, or any of the numerals currently used in Indian languages (e.g. Devanagari
: ०.१.२.३.४.५.६.७.८.९).

The European acceptance of the numerals was accelerated by the invention of the printing press , and they became widely known during the 15th century. Early evidence of their use in Britain includes: an equal hour horary quadrant from 1396, in England, a 1445 inscription on the tower of Heathfield Church, Sussex
; a 1448 inscription on a wooden lych-gate of Bray Church, Berkshire
; and a 1487 inscription on the belfry door at Piddletrenthide church, Dorset
; and in Scotland
a 1470 inscription on the tomb of the first Earl of Huntly in Elgin Cathedral. (See G.F. Hill, _The Development of Arabic
Numerals in Europe_ for more examples.) In central Europe, the King of Hungary Ladislaus the Posthumous , started the use of Arabic
numerals, which appear for the first time in a royal document of 1456. By the mid-16th century, they were in common use in most of Europe. Roman numerals remained in use mostly for the notation of Anno Domini
Anno Domini
years, and for numbers on clockfaces.

Today, Roman numerals are still used for enumeration of lists (as an alternative to alphabetical enumeration), for sequential volumes, to differentiate monarchs or family members with the same first names, and (in lower case) to number pages in prefatory material in books.


Cyrillic numerals were a numbering system derived from the Cyrillic alphabet , used by South and East Slavic peoples . The system was used in Russia as late as the early 18th century when Peter the Great replaced it with Arabic


Iron plate with an order 6 magic square in Persian/ Arabic numbers from China, dating to the Yuan Dynasty
Yuan Dynasty

numerals were introduced to China during the Yuan Dynasty (1271–1368) by the Muslim Hui people . In the early 17th century, European-style Arabic
numerals were introduced by Spanish and Portuguese Jesuits.


Main article: Algorism

The numeral system employed, known as algorism , is positional decimal notation. Various symbol sets are used to represent numbers in the Hindu– Arabic
numeral system, which may have evolved from the Brahmi numerals , or developed independently from it. The symbols used to represent the system have split into various typographical variants since the Middle Ages
Middle Ages

* The widespread Western Arabic
numerals used with the Latin script , in the table below labelled _European_, descended from the West Arabic
numerals developed in al-Andalus (Andalucía, Spain) and the Maghreb
. Spanish scholars because of the geographic proximity, trade and constant warfare with the Muslim kingdoms of Southern Spain saw a potential in the simplicity of Arabic
numbers, and decided to adopt those symbols, later other Europeans followed and incorporated them too. (There are two typographic styles for rendering European numerals, known as lining figures and text figures ). * The Arabic–Indic or Eastern Arabic numerals , used with the Arabic
script , developed primarily in what is now Iraq
. A variant of the Eastern Arabic numerals used in the Persian and Urdu languages is shown as East Arabic-Indic. * The Devanagari
numerals used with Devanagari
and related variants are grouped as Indian numerals .

The evolution of the numerals in early Europe is shown on a table created by the French scholar Jean-Étienne Montucla in his _Histoire de la Mathematique_, which was published in 1757:

The Arabic
numeral glyphs 0–9 are encoded in ASCII and Unicode at positions 0x30 to 0x39, matching up with the second hexadecimal digit for convenience:


0011 0000 060 48 30 0

0011 0001 061 49 31 1

0011 0010 062 50 32 2

0011 0011 063 51 33 3

0011 0100 064 52 34 4

0011 0101 065 53 35 5

0011 0110 066 54 36 6

0011 0111 067 55 37 7

0011 1000 070 56 38 8

0011 1001 071 57 39 9


* Abjad numerals * Chinese numerals * Counting rods – decimal positional numeral system with zero * Decimal * Greek numerals * Japanese numerals * Maya numerals * Regional variations in modern handwritten Arabic


* ^ Schipp, Bernhard; Krämer, Walter (2008), _Statistical Inference, Econometric Analysis and Matrix Algebra: Festschrift in Honour of Götz Trenkler_, Springer , p. 387, ISBN 9783790821208 * ^ Lumpkin, Beatrice; Strong, Dorothy (1995), _Multicultural science and math connections: middle school projects and activities_, Walch Publishing, p. 118, ISBN 9780825126598 * ^ _A_ _B_ Bulliet, Richard; Crossley, Pamela; Headrick,, Daniel; Hirsch, Steven; Johnson, Lyman (2010). _The Earth and Its Peoples: A Global History, Volume 1_. Cengage Learning. p. 192. ISBN 1439084742 . Indian mathematicians invented the concept of zero and developed the "Arabic" numerals and system of place-value notation used in most parts of the world today * ^ On the Origin of Arabic
Numerals - A. Boucenna - Université Ferhat Abbas Setif
(in French) * ^ "Arabic", _Oxford English Dictionary_, 2nd edition * ^ O'Connor, J. J. and E. F. Robertson. 2000. Indian Numerals, _MacTutor History of Mathematics Archive_, School of Mathematics and Statistics, University of St. Andrews, Scotland. * ^ Plofker 2009 , p. 45. * ^ The MacTutor History of Mathematics archive * ^ Gandz, Solomon (November 1931), "The Origin of the Ghubār Numerals, or the Arabian Abacus and the Articuli", _Isis _, 16 (2): 393–424, JSTOR 224714 , doi :10.1086/346615 * ^ _A_ _B_ Ifrah, Georges (1998). _The universal history of numbers: from prehistory to the invention of the computer; translated from the French by David Bellos_. London: Harvill Press. pp. 356–357. ISBN 9781860463242 . * ^ Philosophy Of Mathematics Francis, John – 2008 – Page 38 * ^ The Ellipse: A Historical and Mathematical Journey Arthur Mazer – 2011 * ^ Encyclopædia Britannica: al-Khwārizmī * ^ Models of Computation: An Introduction to Computability Theory – Page 1 Maribel Fernández – 2009 * ^ Mathorigins.com * ^ Rowlett, Russ (4 July 2004), _Roman and "Arabic" Numerals_, University of North Carolina at Chapel Hill , retrieved 22 June 2009 * ^ Achenbach, Joel (16 September 1994), _Article: Take a Number, Please._, The Washington Post, retrieved 22 June 2009 * ^ "14th century timepiece unearthed in Qld farm shed". ABC News. * ^ Erdélyi: Magyar művelődéstörténet 1-2. kötet. Kolozsvár, 1913, 1918 * ^ Mathforum.org * ^ Helaine Selin , ed. (31 July 1997). _Encyclopaedia of the history of science, technology, and medicine in non-western cultures_. Springer. pp. 198–. ISBN 978-0-7923-4066-9 . Retrieved 3 March 2012.

* ^ Meuleman, Johan H. (23 August 2002). _Islam in the era of globalization: Muslim attitudes towards modernity and identity_. Psychology Press. p. 272. ISBN 978-0-7007-1691-3 . Retrieved 3 March 2012. * ^ Peng Yoke Ho (16 October 2000). _Li, Qi and Shu: An Introduction to Science and Civilization in China_. Courier Dover Publications. p. 106. ISBN 978-0-486-41445-4 . Retrieved 3 March 2012.


* Plofker, Kim (2009), _Mathematics in India_, Princeton University Pres, ISBN 978-0-691-12067-6


* Ore, Oystein (1988), "Hindu- Arabic
numerals", _ Number
Theory and Its History_, Dover, pp. 19–24, ISBN 0486656209 . * Burnett, Charles (2006), "The Semantics of Indian Numerals in Arabic, Greek and Latin", _Journal of Indian Philosophy_, Springer-Netherlands, 34 (1–2): 15–30, doi :10.1007/s10781-005-8153-z . * Encyclopædia Britannica ( Kim Plofker ) (2007), "mathematics, South Asian", _Encyclopædia Britannica Online_: 1–12, retrieved 18 May 2007 . * Hayashi, Takao (1995), _The Bakhshali Manuscript, An ancient Indian mathematical treatise_, Groningen: Egbert Forsten, ISBN 906980087X . * Ifrah, Georges (2000), _A Universal History of Numbers: From Prehistory to Computers_, New York: Wiley, ISBN 0471393401 . * Katz, Victor J. (ed.) (20 July 2007), _The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook_, Princeton, New Jersey: Princeton University Press, ISBN 0691114854 CS1 maint: Extra text: authors list (link ).


_ Wikimedia Commons
Wikimedia Commons
has media related to: ARABIC NUMERALS _ (category)

* Development of Hindu