Ancient physics
   HOME

TheInfoList



OR:

Physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
is a branch of
science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
whose primary objects of study are
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
. Discoveries of physics find applications throughout the natural sciences and in
technology Technology is the application of knowledge to reach practical goals in a specifiable and Reproducibility, reproducible way. The word ''technology'' may also mean the product of such an endeavor. The use of technology is widely prevalent in me ...
. Physics today may be divided loosely into classical physics and modern physics.


Ancient history

Elements of what became physics were drawn primarily from the fields of
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
,
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, and
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
, which were methodologically united through the study of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
. These mathematical disciplines began in antiquity with the Babylonians and with
Hellenistic In Classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC and the emergence of the Roman Empire, as signified by the Battle of Actium in ...
writers such as Archimedes and
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importance ...
.
Ancient philosophy This page lists some links to ancient philosophy, namely philosophical thought extending as far as early post-classical history (). Overview Genuine philosophical thought, depending upon original individual insights, arose in many culture ...
, meanwhile, included what was called "
Physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
".


''Greek concept''

The move towards a rational understanding of nature began at least since the Archaic period in Greece (650–480
BCE Common Era (CE) and Before the Common Era (BCE) are year notations for the Gregorian calendar (and its predecessor, the Julian calendar), the world's most widely used calendar era. Common Era and Before the Common Era are alternatives to the or ...
) with the
Pre-Socratic philosophers Pre-Socratic philosophy, also known as early Greek philosophy, is ancient Greek philosophy before Socrates. Pre-Socratic philosophers were mostly interested in cosmology, the beginning and the substance of the universe, but the inquiries of the ...
. The philosopher
Thales of Miletus Thales of Miletus ( ; grc-gre, Θαλῆς; ) was a Greek mathematician, astronomer, statesman, and pre-Socratic philosopher from Miletus in Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, regarded ...
(7th and 6th centuries BCE), dubbed "the Father of Science" for refusing to accept various supernatural, religious or mythological explanations for natural phenomena, proclaimed that every event had a natural cause. Thales also made advancements in 580 BCE by suggesting that water is the basic element, experimenting with the attraction between
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nicke ...
s and rubbed
amber Amber is fossilized tree resin that has been appreciated for its color and natural beauty since Neolithic times. Much valued from antiquity to the present as a gemstone, amber is made into a variety of decorative objects."Amber" (2004). In ...
and formulating the first recorded cosmologies. Anaximander, famous for his proto-
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
ary theory, disputed Thales' ideas and proposed that rather than water, a substance called ''
apeiron ''Apeiron'' (; ) is a Greek word meaning "(that which is) unlimited," "boundless", "infinite", or "indefinite" from ''a-'', "without" and ''peirar'', "end, limit", "boundary", the Ionic Greek form of ''peras'', "end, limit, boundary". Origin ...
'' was the building block of all matter. Around 500 BCE,
Heraclitus Heraclitus of Ephesus (; grc-gre, Ἡράκλειτος , "Glory of Hera"; ) was an ancient Greek pre-Socratic philosopher from the city of Ephesus, which was then part of the Persian Empire. Little is known of Heraclitus's life. He wrot ...
proposed that the only basic law governing the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
was the principle of change and that nothing remains in the same state indefinitely. This observation made him one of the first scholars in ancient physics to address the role of
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, ...
in the universe, a key and sometimes contentious concept in modern and present-day physics. During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times,
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics, that is, nature and the physical universe. It was dominant before the development of modern science. From the ancient wo ...
slowly developed into an exciting and contentious field of study.
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
( el, Ἀριστοτέλης, ''Aristotélēs'') (384 – 322 BCE), a student of
Plato Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institution ...
, promoted the concept that observation of physical phenomena could ultimately lead to the discovery of the natural laws governing them. Aristotle's writings cover physics,
metaphysics Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility. It includes questions about the nature of conscio ...
,
poetry Poetry (derived from the Greek ''poiesis'', "making"), also called verse, is a form of literature that uses aesthetic and often rhythmic qualities of language − such as phonaesthetics, sound symbolism, and metre − to evoke meanings i ...
,
theater Theatre or theater is a collaborative form of performing art that uses live performers, usually actors or actresses, to present the experience of a real or imagined event before a live audience in a specific place, often a stage. The perform ...
,
music Music is generally defined as the art of arranging sound to create some combination of form, harmony, melody, rhythm or otherwise expressive content. Exact definitions of music vary considerably around the world, though it is an aspe ...
,
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premise ...
, rhetoric,
linguistics Linguistics is the science, scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure ...
,
politics Politics (from , ) is the set of activities that are associated with making decisions in groups, or other forms of power relations among individuals, such as the distribution of resources or status. The branch of social science that stud ...
,
government A government is the system or group of people governing an organized community, generally a state. In the case of its broad associative definition, government normally consists of legislature, executive, and judiciary. Government is ...
,
ethics Ethics or moral philosophy is a branch of philosophy that "involves systematizing, defending, and recommending concepts of right and wrong behavior".''Internet Encyclopedia of Philosophy'' The field of ethics, along with aesthetics, concer ...
,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
and
zoology Zoology ()The pronunciation of zoology as is usually regarded as nonstandard, though it is not uncommon. is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and ...
. He wrote the first work which refers to that line of study as "Physics" – in the 4th century BCE, Aristotle founded the system known as
Aristotelian physics Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
. He attempted to explain ideas such as
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and m ...
(and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
) with the theory of
four elements Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simi ...
. Aristotle believed that all matter was made up of aether, or some combination of four elements: earth, water, air, and fire. According to Aristotle, these four terrestrial elements are capable of inter-transformation and move toward their natural place, so a stone falls downward toward the center of the cosmos, but flames rise upward toward the
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out t ...
. Eventually,
Aristotelian physics Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
became enormously popular for many centuries in Europe, informing the scientific and scholastic developments of the
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
. It remained the mainstream scientific paradigm in Europe until the time of
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
and
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
. Early in Classical Greece, knowledge that the Earth is
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
("round") was common. Around 240 BCE, as the result of a seminal experiment, Eratosthenes (276–194 BCE) accurately estimated its circumference. In contrast to Aristotle's geocentric views, Aristarchus of Samos ( el, Ἀρίσταρχος; c. 310 – c. 230 BCE) presented an explicit argument for a
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth a ...
of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, i.e. for placing the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, not the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, at its centre.
Seleucus of Seleucia Seleucus of Seleucia ( el, Σέλευκος ''Seleukos''; born c. 190 BC; fl. c. 150 BC) was a Hellenistic astronomer and philosopher. Coming from Seleucia on the Tigris, Mesopotamia, the capital of the Seleucid Empire, or, alternatively, Seleuk ...
, a follower of Aristarchus' heliocentric theory, stated that the Earth rotated around its own axis, which, in turn, revolved around the Sun. Though the arguments he used were lost,
Plutarch Plutarch (; grc-gre, Πλούταρχος, ''Ploútarchos''; ; – after AD 119) was a Greek Middle Platonist philosopher, historian, biographer, essayist, and priest at the Temple of Apollo in Delphi. He is known primarily for hi ...
stated that Seleucus was the first to prove the heliocentric system through reasoning. In the 3rd century BCE, the Greek mathematician
Archimedes of Syracuse Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
( el, Ἀρχιμήδης (287–212 BCE) – generally considered to be the greatest mathematician of antiquity and one of the greatest of all time – laid the foundations of
hydrostatics Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body "fluids at hydrostatic equilibrium and the pressure in a fluid, or exerted by a fluid, on an imme ...
, statics and calculated the underlying mathematics of the
lever A lever is a simple machine consisting of a beam or rigid rod pivoted at a fixed hinge, or '' fulcrum''. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is d ...
. A leading scientist of classical antiquity, Archimedes also developed elaborate systems of pulleys to move large objects with a minimum of effort. The
Archimedes' screw The Archimedes screw, also known as the Archimedean screw, hydrodynamic screw, water screw or Egyptian screw, is one of the earliest hydraulic machines. Using Archimedes screws as water pumps (Archimedes screw pump (ASP) or screw pump) dates back ...
underpins modern hydroengineering, and his machines of war helped to hold back the armies of Rome in the First Punic War. Archimedes even tore apart the arguments of Aristotle and his metaphysics, pointing out that it was impossible to separate mathematics and nature and proved it by converting mathematical theories into practical inventions. Furthermore, in his work ''
On Floating Bodies ''On Floating Bodies'' ( el, Περὶ τῶν ἐπιπλεόντων σωμάτων) is a Greek-language work consisting of two books written by Archimedes of Syracuse (287 – c. 212 BC), one of the most important mathematicians, physici ...
'', around 250 BCE, Archimedes developed the law of
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
, also known as
Archimedes' principle Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' ...
. In mathematics, Archimedes used the method of exhaustion to calculate the area under the arc of a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
with the summation of an infinite series, and gave a remarkably accurate approximation of pi. He also defined the spiral bearing his name, formulae for the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
s of surfaces of revolution and an ingenious system for expressing very large numbers. He also developed the principles of equilibrium states and centers of gravity, ideas that would influence the well known scholars, Galileo, and Newton.
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
(190–120 BCE), focusing on astronomy and mathematics, used sophisticated geometrical techniques to map the motion of the stars and
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s, even predicting the times that Solar eclipses would happen. He added calculations of the distance of the Sun and Moon from the Earth, based upon his improvements to the observational instruments used at that time. Another of the most famous of the early physicists was
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importance ...
(90–168 CE), one of the leading minds during the time of the
Roman Empire The Roman Empire ( la, Imperium Romanum ; grc-gre, Βασιλεία τῶν Ῥωμαίων, Basileía tôn Rhōmaíōn) was the post- Republican period of ancient Rome. As a polity, it included large territorial holdings around the Mediter ...
. Ptolemy was the author of several scientific treatises, at least three of which were of continuing importance to later Islamic and European science. The first is the astronomical treatise now known as the '' Almagest'' (in Greek, Ἡ Μεγάλη Σύνταξις, "The Great Treatise", originally Μαθηματικὴ Σύνταξις, "Mathematical Treatise"). The second is the ''
Geography Geography (from Greek: , ''geographia''. Combination of Greek words ‘Geo’ (The Earth) and ‘Graphien’ (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, an ...
'', which is a thorough discussion of the geographic knowledge of the Greco-Roman world. Much of the accumulated knowledge of the ancient world was lost. Even of the works of the better known thinkers, few fragments survived. Although he wrote at least fourteen books, almost nothing of Hipparchus' direct work survived. Of the 150 reputed Aristotelian works, only 30 exist, and some of those are "little more than lecture notes".


India and China

Important physical and mathematical traditions also existed in ancient Chinese and Indian sciences. In
Indian philosophy Indian philosophy refers to philosophical traditions of the Indian subcontinent. A traditional Hindu classification divides āstika and nāstika schools of philosophy, depending on one of three alternate criteria: whether it believes the Veda ...
, Maharishi
Kanada Kanada may refer to: *Kanada (philosopher), the Hindu sage who founded the philosophy of Vaisheshika *Kanada (family of ragas), a group of ragas in Hindustani music *Kanada (surname) *Kanada Station, train station in Fukuoka, Japan *Kannada, one of ...
was the first to systematically develop a theory of atomism around 200 BCE though some authors have allotted him an earlier era in the 6th century BCE. It was further elaborated by the Buddhist atomists
Dharmakirti Dharmakīrti (fl. c. 6th or 7th century; Tibetan: ཆོས་ཀྱི་གྲགས་པ་; Wylie: ''chos kyi grags pa''), was an influential Indian Buddhist philosopher who worked at Nālandā.Tom Tillemans (2011)Dharmakirti Stanford ...
and
Dignāga Dignāga (a.k.a. ''Diṅnāga'', c. 480 – c. 540 CE) was an Indian Buddhist scholar and one of the Buddhist founders of Indian logic (''hetu vidyā''). Dignāga's work laid the groundwork for the development of deductive logic in India and ...
during the 1st millennium CE. Pakudha Kaccayana, a 6th-century BCE Indian philosopher and contemporary of
Gautama Buddha Siddhartha Gautama, most commonly referred to as the Buddha, was a wandering ascetic and religious teacher who lived in South Asia during the 6th or 5th century BCE and founded Buddhism. According to Buddhist tradition, he was born in Lu ...
, had also propounded ideas about the atomic constitution of the material world. These philosophers believed that other elements (except ether) were physically palpable and hence comprised minuscule particles of matter. The last minuscule particle of matter that could not be subdivided further was termed Parmanu. These philosophers considered the atom to be indestructible and hence eternal. The Buddhists thought atoms to be minute objects unable to be seen to the naked eye that come into being and vanish in an instant. The
Vaisheshika Vaisheshika or Vaiśeṣika ( sa, वैशेषिक) is one of the six schools of Indian philosophy (Vedic systems) from ancient India. In its early stages, the Vaiśeṣika was an independent philosophy with its own metaphysics, epistemolog ...
school of philosophers believed that an atom was a mere point in
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
. It was also first to depict relations between motion and force applied. Indian theories about the atom are greatly abstract and enmeshed in philosophy as they were based on logic and not on personal experience or experimentation. In
Indian astronomy Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a dis ...
,
Aryabhata Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the ''Aryabhatiya'' (which ...
's '' Aryabhatiya'' (499 CE) proposed the Earth's rotation, while
Nilakantha Somayaji Keļallur Nilakantha Somayaji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
(1444–1544) of the
Kerala school of astronomy and mathematics The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta S ...
proposed a semi-heliocentric model resembling the
Tychonic system The Tychonic system (or Tychonian system) is a model of the Universe published by Tycho Brahe in the late 16th century, which combines what he saw as the mathematical benefits of the Copernican system with the philosophical and "physical" bene ...
. The study of magnetism in Ancient China dates back to the 4th century BCE. (in the ''Book of the Devil Valley Master''), A main contributor to this field was Shen Kuo (1031–1095), a
polymath A polymath ( el, πολυμαθής, , "having learned much"; la, homo universalis, "universal human") is an individual whose knowledge spans a substantial number of subjects, known to draw on complex bodies of knowledge to solve specific pro ...
and statesman who was the first to describe the magnetic-needle compass used for navigation, as well as establishing the concept of
true north True north (also called geodetic north or geographic north) is the direction along Earth's surface towards the geographic North Pole or True North Pole. Geodetic north differs from ''magnetic'' north (the direction a compass points toward t ...
. In optics, Shen Kuo independently developed a
camera obscura A camera obscura (; ) is a darkened room with a small hole or lens at one side through which an image is projected onto a wall or table opposite the hole. ''Camera obscura'' can also refer to analogous constructions such as a box or tent in w ...
. Joseph Needham, Volume 4, Part 1, 98.


Islamic world

In the 7th to 15th centuries, scientific progress occurred in the Muslim world. Many classic works in
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
n,
Assyria Assyria ( Neo-Assyrian cuneiform: , romanized: ''māt Aššur''; syc, ܐܬܘܪ, ʾāthor) was a major ancient Mesopotamian civilization which existed as a city-state at times controlling regional territories in the indigenous lands of the ...
n, Sassanian (Persian) and
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
, including the works of
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
, were translated into
Arabic Arabic (, ' ; , ' or ) is a Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C. E.Watson; Walter ...
. Important contributions were made by
Ibn al-Haytham Ḥasan Ibn al-Haytham, Latinized as Alhazen (; full name ; ), was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq.For the description of his main fields, see e.g. ("He is one of the pri ...
(965–1040), an
Arab The Arabs (singular: Arab; singular ar, عَرَبِيٌّ, DIN 31635: , , plural ar, عَرَب, DIN 31635: , Arabic pronunciation: ), also known as the Arab people, are an ethnic group mainly inhabiting the Arab world in Western Asia, ...
scientist, considered to be a founder of modern
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
. Ptolemy and Aristotle theorised that light either shone from the eye to illuminate objects or that "forms" emanated from objects themselves, whereas al-Haytham (known by the Latin name "Alhazen") suggested that light travels to the eye in rays from different points on an object. The works of Ibn al-Haytham and Abū Rayhān Bīrūnī (973–1050), a Persian scientist, eventually passed on to Western Europe where they were studied by scholars such as Roger Bacon and
Witelo Vitello ( pl, Witelon; german: Witelo; – 1280/1314) was a friar, theologian, natural philosopher and an important figure in the history of philosophy in Poland. Name Vitello's name varies with some sources. In earlier publications he was quo ...
. Ibn al-Haytham and Biruni were early proponents of the
scientific method The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific ...
. Ibn al-Haytham is considered to be by some the "father of the modern scientific method" due to his emphasis on experimental data and reproducibility of its results. The earliest methodical approach to
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
s in the modern sense is visible in the works of Ibn al-Haytham, who introduced an inductive-experimental method for achieving results. Bīrūnī introduced early scientific methods for several different fields of inquiry during the 1020s and 1030s, including an early experimental method for
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
.Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in : Biruni's methodology resembled the modern scientific method, particularly in his emphasis on repeated experimentation.
Ibn Sīnā Ibn Sina ( fa, ابن سینا; 980 – June 1037 CE), commonly known in the West as Avicenna (), was a Persian polymath who is regarded as one of the most significant physicians, astronomers, philosophers, and writers of the Islamic ...
(980–1037), known as "Avicenna", was a polymath from Bukhara (in present-day
Uzbekistan Uzbekistan (, ; uz, Ozbekiston, italic=yes / , ; russian: Узбекистан), officially the Republic of Uzbekistan ( uz, Ozbekiston Respublikasi, italic=yes / ; russian: Республика Узбекистан), is a doubly landlocked co ...
) responsible for important contributions to physics, optics, philosophy and
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pr ...
. He published his theory of
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and m ...
in '' Book of Healing'' (1020), where he argued that an impetus is imparted to a projectile by the thrower, and believed that it was a temporary virtue that would decline even in a vacuum. He viewed it as persistent, requiring external forces such as
air resistance In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
to dissipate it. Ibn Sina made a distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. He concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. He also claimed that projectile in a vacuum would not stop unless it is acted upon. This conception of motion is consistent with
Newton's first law of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
,
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
, which states that an object in motion will stay in motion unless it is acted on by an external force. This idea which dissented from the Aristotelian view was later described as " impetus" by John Buridan, who was influenced by Ibn Sina's ''Book of Healing''.Sayili, Aydin. "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences vol. 500(1). p.477-482. Hibat Allah Abu'l-Barakat al-Baghdaadi (c. 1080-1165) adopted and modified Ibn Sina's theory on
projectile motion Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particul ...
. In his ''Kitab al-Mu'tabar'', Abu'l-Barakat stated that the mover imparts a violent inclination (''mayl qasri'') on the moved and that this diminishes as the moving object distances itself from the mover. He also proposed an explanation of the
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by t ...
of falling bodies by the accumulation of successive increments of
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
with successive increments of
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
. According to
Shlomo Pines Shlomo Pines (; ; August 5, 1908 in Charenton-le-Pont – January 9, 1990 in Jerusalem) was an Israeli scholar of Jewish and Islamic philosophy, best known for his English translation of Maimonides' ''Guide of the Perplexed''. Biography Pines wa ...
, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law amely, that a constant force produces a uniform motion nd is thus ananticipation in a vague fashion of the fundamental law of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
amely, that a force applied continuously produces acceleration" Jean Buridan and
Albert of Saxony en, Frederick Augustus Albert Anthony Ferdinand Joseph Charles Maria Baptist Nepomuk William Xavier George Fidelis , image = Albert of Saxony by Nicola Perscheid c1900.jpg , image_size = , caption = Photograph by Nicola Persch ...
later referred to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.
Ibn Bajjah Abū Bakr Muḥammad ibn Yaḥyà ibn aṣ-Ṣā’igh at-Tūjībī ibn Bājja ( ar, أبو بكر محمد بن يحيى بن الصائغ التجيبي بن باجة), best known by his Latinised name Avempace (;  – 1138), was an A ...
(c. 1085–1138), known as "Avempace" in Europe, proposed that for every force there is always a
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
force. Ibn Bajjah was a critic of Ptolemy and he worked on creating a new theory of velocity to replace the one theorized by Aristotle. Two future philosophers supported the theories Avempace created, known as Avempacean dynamics. These philosophers were
Thomas Aquinas Thomas Aquinas, OP (; it, Tommaso d'Aquino, lit=Thomas of Aquino; 1225 – 7 March 1274) was an Italian Dominican friar and priest who was an influential philosopher, theologian and jurist in the tradition of scholasticism; he is known wit ...
, a Catholic priest, and
John Duns Scotus John Duns Scotus ( – 8 November 1308), commonly called Duns Scotus ( ; ; "Duns the Scot"), was a Scottish Catholic priest and Franciscan friar, university professor, philosopher, and theologian. He is one of the four most important ...
. Galileo went on to adopt Avempace's formula "that the velocity of a given object is the difference of the motive power of that object and the resistance of the medium of motion". Nasir al-Din al-Tusi (1201–1274), a Persian astronomer and mathematician who died in Baghdad introduced the
Tusi couple The Tusi couple is a mathematical device in which a small circle rotates inside a larger circle twice the diameter of the smaller circle. Rotations of the circles cause a point on the circumference of the smaller circle to oscillate back and fo ...
. Copernicus later drew heavily on the work of al-Din al-Tusi and his students, but without acknowledgment.


Medieval Europe

Awareness of ancient works re-entered the West through translations from Arabic to Latin. Their re-introduction, combined with Judeo-Islamic theological commentaries, had a great influence on Medieval philosophers such as
Thomas Aquinas Thomas Aquinas, OP (; it, Tommaso d'Aquino, lit=Thomas of Aquino; 1225 – 7 March 1274) was an Italian Dominican friar and priest who was an influential philosopher, theologian and jurist in the tradition of scholasticism; he is known wit ...
. Scholastic European scholars, who sought to reconcile the philosophy of the ancient classical philosophers with Christian theology, proclaimed Aristotle the greatest thinker of the ancient world. In cases where they didn't directly contradict the Bible, Aristotelian physics became the foundation for the physical explanations of the European Churches. Quantification became a core element of medieval physics. Based on Aristotelian physics, Scholastic physics described things as moving according to their essential nature. Celestial objects were described as moving in circles, because perfect circular motion was considered an innate property of objects that existed in the uncorrupted realm of the
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars ...
. The
theory of impetus The theory of impetus was an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. It was introduced by John Philoponus in the 6th century, and elaborated by Nur ad-Din al-Bitru ...
, the ancestor to the concepts of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
and momentum, was developed along similar lines by medieval philosophers such as
John Philoponus John Philoponus (Greek: ; ; c. 490 – c. 570), also known as John the Grammarian or John of Alexandria, was a Byzantine Greek philologist, Aristotelian commentator, Christian theologian and an author of a considerable number of philosophical tr ...
and
Jean Buridan Jean Buridan (; Latin: ''Johannes Buridanus''; – ) was an influential 14th-century French philosopher. Buridan was a teacher in the faculty of arts at the University of Paris for his entire career who focused in particular on logic and the wor ...
. Motions below the lunar sphere were seen as imperfect, and thus could not be expected to exhibit consistent motion. More idealized motion in the "sublunary" realm could only be achieved through artifice, and prior to the 17th century, many did not view artificial experiments as a valid means of learning about the natural world. Physical explanations in the sublunary realm revolved around tendencies. Stones contained the element earth, and earthly objects tended to move in a straight line toward the centre of the earth (and the universe in the Aristotelian geocentric view) unless otherwise prevented from doing so.


Scientific revolution

During the 16th and 17th centuries, a large advancement of scientific progress known as the
Scientific revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transfo ...
took place in Europe. Dissatisfaction with older philosophical approaches had begun earlier and had produced other changes in society, such as the
Protestant Reformation The Reformation (alternatively named the Protestant Reformation or the European Reformation) was a major movement within Western Christianity in 16th-century Europe that posed a religious and political challenge to the Catholic Church and ...
, but the revolution in science began when
natural philosophers Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics, that is, nature and the physical universe. It was dominant before the development of modern science. From the ancient wor ...
began to mount a sustained attack on the Scholastic philosophical programme and supposed that mathematical descriptive schemes adopted from such fields as mechanics and astronomy could actually yield universally valid characterizations of motion and other concepts.


Nicolaus Copernicus

A breakthrough in
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
was made by Polish astronomer
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulated ...
(1473–1543) when, in 1543, he gave strong arguments for the
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth a ...
of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, ostensibly as a means to render tables charting planetary motion more accurate and to simplify their production. In heliocentric models of the Solar system, the Earth orbits the Sun along with other bodies in Earth's galaxy, a contradiction according to the Greek-Egyptian astronomer Ptolemy (2nd century CE; see above), whose system placed the Earth at the center of the Universe and had been accepted for over 1,400 years. The Greek astronomer Aristarchus of Samos (c.310 – c.230 BCE) had suggested that the Earth revolves around the Sun, but Copernicus' reasoning led to lasting general acceptance of this "revolutionary" idea. Copernicus' book presenting the theory (''
De revolutionibus orbium coelestium ''De revolutionibus orbium coelestium'' (English translation: ''On the Revolutions of the Heavenly Spheres'') is the seminal work on the heliocentric theory of the astronomer Nicolaus Copernicus (1473–1543) of the Polish Renaissance. The book, ...
'', "On the Revolutions of the Celestial Spheres") was published just before his death in 1543 and, as it is now generally considered to mark the beginning of modern astronomy, is also considered to mark the beginning of the Scientific revolution. Copernicus' new perspective, along with the accurate observations made by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
, enabled German astronomer Johannes Kepler (1571–1630) to formulate his laws regarding planetary motion that remain in use today.


Galileo Galilei

The Italian mathematician, astronomer, and physicist
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
(1564–1642) was famous for his support for Copernicanism, his astronomical discoveries, empirical experiments and his improvement of the telescope. As a mathematician, Galileo's role in the
university A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. Universities typically offer both undergraduate and postgraduate programs. In the United States ...
culture of his era was subordinated to the three major topics of study:
law Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior,Robertson, ''Crimes against humanity'', 90. with its precise definition a matter of longstanding debate. It has been vario ...
,
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pr ...
, and
theology Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is taught as an academic discipline, typically in universities and seminaries. It occupies itself with the unique content of analyzing the ...
(which was closely allied to philosophy). Galileo, however, felt that the descriptive content of the technical disciplines warranted philosophical interest, particularly because mathematical analysis of astronomical observations – notably, Copernicus' analysis of the relative motions of the Sun, Earth, Moon, and planets – indicated that philosophers' statements about the nature of the universe could be shown to be in error. Galileo also performed mechanical experiments, insisting that motion itself – regardless of whether it was produced "naturally" or "artificially" (i.e. deliberately) – had universally consistent characteristics that could be described mathematically. Galileo's early studies at the
University of Pisa The University of Pisa ( it, Università di Pisa, UniPi), officially founded in 1343, is one of the oldest universities in Europe. History The Origins The University of Pisa was officially founded in 1343, although various scholars place ...
were in medicine, but he was soon drawn to mathematics and physics. At 19, he discovered (and, subsequently, verified) the isochronal nature of the
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward th ...
when, using his pulse, he timed the oscillations of a swinging lamp in Pisa's cathedral and found that it remained the same for each swing regardless of the swing's
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
. He soon became known through his invention of a
hydrostatic balance In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary ...
and for his treatise on the
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force ma ...
of solid bodies. While teaching at the University of Pisa (1589–92), he initiated his experiments concerning the laws of bodies in motion that brought results so contradictory to the accepted teachings of Aristotle that strong antagonism was aroused. He found that bodies do not fall with velocities proportional to their weights. The famous story in which Galileo is said to have dropped weights from the
Leaning Tower of Pisa The Leaning Tower of Pisa ( it, torre pendente di Pisa), or simply, the Tower of Pisa (''torre di Pisa'' ), is the ''campanile'', or freestanding bell tower, of Pisa Cathedral. It is known for its nearly four-degree lean, the result of an unst ...
is apocryphal, but he did find that the path of a projectile is a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
and is credited with conclusions that anticipated
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
(e.g. the notion of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
). Among these is what is now called
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his '' Dialogue Concerning the Two Chief World Systems'' using t ...
, the first precisely formulated statement about properties of space and time outside
three-dimensional geometry In mathematics, solid geometry or stereometry is the traditional name for the geometry of three-dimensional, Euclidean spaces (i.e., 3D geometry). Stereometry deals with the measurements of volumes of various solid figures (or 3D figures), inc ...
. Galileo has been called the "father of modern
observational astronomy Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical ...
", the "father of modern physics", the "father of science", and "the father of modern science". Finocchiaro (2007). According to Stephen Hawking, "Galileo, perhaps more than any other single person, was responsible for the birth of modern science." As religious orthodoxy decreed a Geocentricism, geocentric or Tychonic system, Tychonic understanding of the Solar system, Galileo's support for heliocentrism provoked controversy and he was tried by the Inquisition. Found "vehemently suspect of heresy", he was forced to recant and spent the rest of his life under house arrest. The contributions that Galileo made to observational astronomy include the telescopic confirmation of the phases of Venus; his discovery, in 1609, of Moons of Jupiter, Jupiter's four largest moons (subsequently given the collective name of the "Galilean moons"); and the observation and analysis of sunspots. Galileo also pursued applied science and technology, inventing, among other instruments, a military compass. His discovery of the Jovian moons Sidereus Nuncius, was published in 1610 and enabled him to obtain the position of mathematician and philosopher to the Medici court. As such, he was expected to engage in debates with philosophers in the Aristotelian tradition and received a large audience for his own publications such as the ''Two New Sciences, Discourses and Mathematical Demonstrations Concerning Two New Sciences'' (published abroad following his arrest for the publication of ''Dialogue Concerning the Two Chief World Systems'') and ''The Assayer''. Galileo's interest in experimenting with and formulating mathematical descriptions of motion established experimentation as an integral part of natural philosophy. This tradition, combining with the non-mathematical emphasis on the collection of "experimental histories" by philosophical reformists such as William Gilbert (astronomer), William Gilbert and Francis Bacon, drew a significant following in the years leading up to and following Galileo's death, including Evangelista Torricelli and the participants in the Accademia del Cimento in Italy; Marin Mersenne and Blaise Pascal in France; Christiaan Huygens in the Netherlands; and Robert Hooke and Robert Boyle in England.


René Descartes

The French philosopher René Descartes (1596–1650) was well-connected to, and influential within, the experimental philosophy networks of the day. Descartes had a more ambitious agenda, however, which was geared toward replacing the Scholastic philosophical tradition altogether. Questioning the reality interpreted through the senses, Descartes sought to re-establish philosophical explanatory schemes by reducing all perceived phenomena to being attributable to the motion of an invisible sea of "corpuscles". (Notably, he reserved human thought and God from his scheme, holding these to be separate from the physical universe). In proposing this philosophical framework, Descartes supposed that different kinds of motion, such as that of planets versus that of terrestrial objects, were not fundamentally different, but were merely different manifestations of an endless chain of corpuscular motions obeying universal principles. Particularly influential were his explanations for circular astronomical motions in terms of the vortex motion of corpuscles in space (Descartes argued, in accord with the beliefs, if not the methods, of the Scholastics, that a vacuum could not exist), and his explanation of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
in terms of corpuscles pushing objects downward. Descartes, like Galileo, was convinced of the importance of mathematical explanation, and he and his followers were key figures in the development of mathematics and geometry in the 17th century. Cartesian mathematical descriptions of motion held that all mathematical formulations had to be justifiable in terms of direct physical action, a position held by Christiaan Huygens, Huygens and the German philosopher Gottfried Leibniz, who, while following in the Cartesian tradition, developed his own philosophical alternative to Scholasticism, which he outlined in his 1714 work, ''The Monadology''. Descartes has been dubbed the 'Father of Modern Philosophy', and much subsequent Western philosophy is a response to his writings, which are studied closely to this day. In particular, his ''Meditations on First Philosophy'' continues to be a standard text at most university philosophy departments. Descartes' influence in mathematics is equally apparent; the Cartesian coordinate system — allowing algebraic equations to be expressed as geometric shapes in a two-dimensional coordinate system — was named after him. He is credited as the father of analytical geometry, the bridge between algebra and
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, important to the discovery of calculus and Mathematical analysis, analysis.


Christiaan Huygens

The Dutch physicist, mathematician, astronomer and inventor Christiaan Huygens (1629–1695) was the leading scientist in Europe between Galileo and Newton. Huygens came from a family of nobility that had an important position in the Dutch society of the 17th century; a time in which the Dutch Republic flourished economically and culturally. This period - roughly between 1588 and 1702 - of the history of the Netherlands is also referred to as the Dutch Golden Age, an era during the Scientific Revolution when Dutch science was among the most acclaimed in Europe. At this time, intellectuals and scientists like René Descartes, Baruch Spinoza, Pierre Bayle, Antonie van Leeuwenhoek, John Locke and Hugo Grotius resided in the Netherlands. It was in this intellectual environment where Christiaan Huygens grew up. Christiaan's father, Constantijn Huygens, was, apart from an important poet, the secretary and diplomat for the Princes of Orange. He knew many scientists of his time because of his contacts and intellectual interests, including René Descartes and Marin Mersenne, and it was because of these contacts that Christiaan Huygens became aware of their work. Especially Descartes, whose mechanistic philosophy was going to have a huge influence on Huygens' own work. Descartes was later impressed by the skills Christiaan Huygens showed in geometry, as was Mersenne, who christened him "the new Archimedes" (which led Constantijn to refer to his son as "my little Archimedes"). A child prodigy, Huygens began his correspondence with Marin Mersenne when he was 17 years old. Huygens became interested in games of chance when he encountered the work of Fermat, Blaise Pascal and Girard Desargues. It was Blaise Pascal who encourages him to write ''Van Rekeningh in Spelen van Gluck'', which Frans van Schooten translated and published as ''De Ratiociniis in Ludo Aleae'' in 1657. The book is the earliest known scientific treatment of the subject, and at the time the most coherent presentation of a mathematical approach to games of chance. Two years later Huygens derived geometrically the now standard formulae in classical mechanics for the centripetal force, centripetal- and centrifugal force in his work ''De vi Centrifuga'' (1659). Around the same time Huygens' research in horology resulted in the invention of the pendulum clock; a breakthrough in timekeeping and the most accurate timekeeper for almost 300 years. The theoretical research of the way the pendulum works eventually led to the publication of one of his most important achievements: the Horologium Oscillatorium. This work was published in 1673 and became one of the three most important 17th century works on mechanics (the other two being Galileo’s ''Discourses and Mathematical Demonstrations Relating to Two New Sciences'' (1638) and Isaac Newton, Newton’s ''Philosophiæ Naturalis Principia Mathematica'' (1687)). The ''Horologium Oscillatorium'' is the first modern treatise in which a physical problem (the Acceleration, accelerated motion of a falling body) is Mathematical model, idealized by a set of parameters then analyzed mathematically and constitutes one of the seminal works of applied mathematics.Bruce, I. (2007).
Christian Huygens: Horologium Oscillatorium
'. Translated and annotated by Ian Bruce.
It is for this reason, Huygens has been called the first Theoretical physics, theoretical physicist and one of the founders of modern mathematical physics.Dijksterhuis, F.J. (2008) Stevin, Huygens and the Dutch republic. ''Nieuw archief voor wiskunde'', ''5'', pp. 100–10

/ref> Huygens' ''Horologium Oscillatorium'' had a tremendous influence on the history of physics, especially on the work of
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
, who greatly admired the work. For instance, the laws Huygens described in the ''Horologium Oscillatorium'' are structurally the same as Newton's first two Newton's laws of motion, laws of motion. Five years after the publication of his ''Horologium Oscillatorium'', Huygens described his wave theory of light. Though proposed in 1678, it wasn't published until 1690 in his Traité de la Lumière. His mathematical theory of light was initially rejected in favour of Newton's corpuscular theory of light, until Augustin-Jean Fresnel adopted Huygens' principle to give a complete explanation of the rectilinear propagation and diffraction effects of light in 1821. Today this principle is known as the Huygens–Fresnel principle. As an astronomer, Huygens began grinding lenses with his brother Constantijn jr. to build telescopes for astronomical research. He was the first to identify the rings of Saturn as "a thin, flat ring, nowhere touching, and inclined to the ecliptic," and discovered the first of Saturn's moons, Titan (moon), Titan, using a refracting telescope. Apart from the many important discoveries Huygens made in physics and astronomy, and his inventions of ingenious devices, he was also the first who brought mathematical rigor to the description of physical phenomena. Because of this, and the fact that he developed institutional frameworks for scientific research on the continent, he has been referred to as "the leading actor in ‘the making of science in Europe’"


Isaac Newton

The late 17th and early 18th centuries saw the achievements of Cambridge University physicist and mathematician Isaac Newton, Sir Isaac Newton (1642-1727). Newton, a fellow of the Royal Society, Royal Society of England, combined his own discoveries in mechanics and astronomy to earlier ones to create a single system for describing the workings of the universe. Newton formulated Newton's laws of motion, three laws of motion which formulated the relationship between motion and objects and also the Newton's law of universal gravitation, law of universal gravitation, the latter of which could be used to explain the behavior not only of falling bodies on the earth but also planets and other celestial bodies. To arrive at his results, Newton invented one form of an entirely new branch of mathematics: calculus (also invented independently by Gottfried Wilhelm Leibniz, Gottfried Leibniz), which was to become an essential tool in much of the later development in most branches of physics. Newton's findings were set forth in his ''Philosophiæ Naturalis Principia Mathematica'' ("Mathematical Principles of Natural Philosophy"), the publication of which in 1687 marked the beginning of the modern period of mechanics and astronomy. Newton was able to refute the Cartesian mechanical tradition that all motions should be explained with respect to the immediate force exerted by corpuscles. Using his three laws of motion and law of universal gravitation, Newton removed the idea that objects followed paths determined by natural shapes and instead demonstrated that not only regularly observed paths, but all the future motions of any body could be deduced mathematically based on knowledge of their existing motion, their mass, and the forces acting upon them. However, observed celestial motions did not precisely conform to a Newtonian treatment, and Newton, who was also deeply interested in
theology Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is taught as an academic discipline, typically in universities and seminaries. It occupies itself with the unique content of analyzing the ...
, imagined that God intervened to ensure the continued stability of the solar system. Newton's principles (but not his mathematical treatments) proved controversial with Continental philosophers, who found his lack of Metaphysics, metaphysical explanation for movement and gravitation philosophically unacceptable. Beginning around 1700, a bitter rift opened between the Continental and British philosophical traditions, which were stoked by heated, ongoing, and viciously personal disputes between the followers of Newton and Leibniz concerning priority over the analytical techniques of calculus, which each had developed independently. Initially, the Cartesian and Leibnizian traditions prevailed on the Continent (leading to the dominance of the Leibnizian calculus notation everywhere except Britain). Newton himself remained privately disturbed at the lack of a philosophical understanding of gravitation while insisting in his writings that none was necessary to infer its reality. As the 18th century progressed, Continental natural philosophers increasingly accepted the Newtonians' willingness to forgo Ontology, ontological metaphysical explanations for mathematically described motions. Newton built the first functioning reflecting telescope and developed a theory of color, published in ''Opticks'', based on the observation that a Triangular prism (optics), prism decomposes Electromagnetic spectrum#Visible radiation (light), white light into the many colours forming the visible spectrum. While Newton explained light as being composed of tiny particles, a rival theory of light which explained its behavior in terms of waves was presented in 1690 by Christiaan Huygens. However, the belief in the mechanistic philosophy coupled with Newton's reputation meant that the wave theory saw relatively little support until the 19th century. Newton also formulated Newton's law of cooling, an empirical law of cooling, studied the speed of sound, investigated power series, demonstrated the Binomial theorem, generalised binomial theorem and developed Newton's method, a method for approximating the Root of a function, roots of a function. His work on infinite series was inspired by Simon Stevin's decimals. Most importantly, Newton showed that the motions of objects on Earth and of celestial bodies are governed by the same set of natural laws, which were neither capricious nor malevolent. By demonstrating the consistency between Kepler's laws of planetary motion and his own theory of gravitation, Newton also removed the last doubts about heliocentrism. By bringing together all the ideas set forth during the Scientific revolution, Newton effectively established the foundation for modern society in mathematics and science.


Other achievements

Other branches of physics also received attention during the period of the Scientific revolution. William Gilbert (astronomer), William Gilbert, court physician to Elizabeth I of England, Queen Elizabeth I, published an important work on magnetism in 1600, describing how the earth itself behaves like a giant magnet. Robert Boyle (1627–91) studied the behavior of gases enclosed in a chamber and formulated the Boyle's law, gas law named for him; he also contributed to physiology and to the founding of modern chemistry. Another important factor in the scientific revolution was the rise of learned societies and academies in various countries. The earliest of these were in Italy and Germany and were short-lived. More influential were the Royal Society of England (1660) and the Academy of Sciences (France), Academy of Sciences in France (1666). The former was a private institution in London and included such scientists as John Wallis, William Brouncker, 2nd Viscount Brouncker, William Brouncker, Thomas Sydenham, John Mayow, and Christopher Wren (who contributed not only to architecture but also to astronomy and anatomy); the latter, in Paris, was a government institution and included as a foreign member the Dutchman Huygens. In the 18th century, important royal academies were established at Berlin (1700) and at St. Petersburg (1724). The societies and academies provided the principal opportunities for the publication and discussion of scientific results during and after the scientific revolution. In 1690, James Bernoulli showed that the cycloid is the solution to the tautochrone problem; and the following year, in 1691, Johann Bernoulli showed that a chain freely suspended from two points will form a catenary, the curve with the lowest possible center of gravity available to any chain hung between two fixed points. He then showed, in 1696, that the cycloid is the solution to the brachistochrone problem.


Early thermodynamics

A precursor of the engine was designed by the German scientist Otto von Guericke who, in 1650, designed and built the world's first vacuum pump to create a vacuum as demonstrated in the Magdeburg hemispheres experiment. He was driven to make a vacuum to disprove
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
's long-held supposition that Horror vacui (physics), 'Nature abhors a vacuum'. Shortly thereafter, Irish physicist and chemist Boyle had learned of Guericke's designs and in 1656, in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed the pressure-volume correlation for a gas: ''PV'' = ''k'', where ''P'' is pressure, ''V'' is
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
and ''k'' is a constant: this relationship is known as Boyle's Law. In that time, air was assumed to be a system of motionless particles, and not interpreted as a system of moving molecules. The concept of thermal motion came two centuries later. Therefore, Boyle's publication in 1660 speaks about a mechanical concept: the air spring. Later, after the invention of the thermometer, the property temperature could be quantified. This tool gave Gay-Lussac the opportunity to derive Gay-Lussac's law, his law, which led shortly later to the ideal gas law. But, already before the establishment of the ideal gas law, an associate of Boyle's named Denis Papin built in 1679 a bone digester, which is a closed vessel with a tightly fitting lid that confines steam until a high pressure is generated. Later designs implemented a steam release valve to keep the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and cylinder engine. He did not however follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time. Hence, prior to 1698 and the invention of the steam engine, Savery Engine, horses were used to power pulleys, attached to buckets, which lifted water out of flooded salt mines in England. In the years to follow, more variations of steam engines were built, such as the Newcomen steam engine, Newcomen Engine, and later the Watt steam engine, Watt Engine. In time, these early engines would eventually be utilized in place of horses. Thus, each engine began to be associated with a certain amount of "horse power" depending upon how many horses it had replaced. The main problem with these first engines was that they were slow and clumsy, converting less than 2% of the input fuel into useful work. In other words, large quantities of coal (or wood) had to be burned to yield only a small fraction of work output. Hence the need for a new science of engine dynamics (mechanics), dynamics was born.


18th-century developments

During the 18th century, the mechanics founded by Newton was developed by several scientists as more mathematicians learned calculus and elaborated upon its initial formulation. The application of mathematical analysis to problems of motion was known as rational mechanics, or mixed mathematics (and was later termed
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
).


Mechanics

In 1714, Brook Taylor derived the fundamental frequency of a stretched vibrating string in terms of its tension and mass per unit length by solving a differential equation. The Swiss mathematician Daniel Bernoulli (1700–1782) made important mathematical studies of the behavior of gases, anticipating the kinetic theory of gases developed more than a century later, and has been referred to as the first mathematical physicist. In 1733, Daniel Bernoulli derived the fundamental frequency and harmonics of a hanging chain by solving a differential equation. In 1734, Bernoulli solved the differential equation for the vibrations of an elastic bar clamped at one end. Bernoulli's treatment of fluid dynamics and his examination of fluid flow was introduced in his 1738 work ''Hydrodynamica''. Rational mechanics dealt primarily with the development of elaborate mathematical treatments of observed motions, using Newtonian principles as a basis, and emphasized improving the tractability of complex calculations and developing of legitimate means of analytical approximation. A representative contemporary textbook was published by Johann Baptiste Horvath. By the end of the century analytical treatments were rigorous enough to verify the stability of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
solely on the basis of Newton's laws without reference to divine intervention—even as deterministic treatments of systems as simple as the n-body problem, three body problem in gravitation remained intractable. In 1705, Edmond Halley predicted the periodicity of Halley's Comet, William Herschel discovered Uranus in 1781, and Henry Cavendish measured the gravitational constant and determined the mass of the Earth in 1798. In 1783, John Michell suggested that some objects might be so massive that not even light could escape from them. In 1739, Leonhard Euler solved the ordinary differential equation for a forced harmonic oscillator and noticed the resonance phenomenon. In 1742, Colin Maclaurin discovered his Maclaurin spheroid, uniformly rotating self-gravitating spheroids. In 1742, Benjamin Robins published his ''New Principles in Gunnery'', establishing the science of aerodynamics. British work, carried on by mathematicians such as Taylor and Maclaurin, fell behind Continental developments as the century progressed. Meanwhile, work flourished at scientific academies on the Continent, led by such mathematicians as Bernoulli, Euler, Lagrange, Laplace, and Adrien-Marie Legendre, Legendre. In 1743, Jean le Rond d'Alembert published his ''Traite de Dynamique'', in which he introduced the concept of generalized forces for accelerating systems and systems with constraints, and applied the new idea of virtual work to solve dynamical problem, now known as D'Alembert's principle, as a rival to Newton's second law of motion. In 1747, Pierre Louis Maupertuis applied minimum principles to mechanics. In 1759, Euler solved the partial differential equation for the vibration of a rectangular drum. In 1764, Euler examined the partial differential equation for the vibration of a circular drum and found one of the Bessel function solutions. In 1776, John Smeaton published a paper on experiments relating power, work (physics), work, momentum and kinetic energy, and supporting the conservation of energy. In 1788, Joseph Louis Lagrange presented Lagrangian mechanics, Lagrange's equations of motion in ''Mécanique Analytique'', in which the whole of mechanics was organized around the principle of virtual work. In 1789, Antoine Lavoisier states the law of conservation of mass. The rational mechanics developed in the 18th century received a brilliant exposition in both Lagrange's 1788 work and the ''Celestial Mechanics'' (1799–1825) of Pierre-Simon Laplace.


Thermodynamics

During the 18th century, thermodynamics was developed through the theories of weightless imponderable fluid, "imponderable fluids", such as heat ("caloric"), electricity, and phlogiston theory, phlogiston (which was rapidly overthrown as a concept following Antoine-Laurent Lavoisier, Lavoisier's identification of oxygen gas late in the century). Assuming that these concepts were real fluids, their flow could be traced through a mechanical apparatus or chemical reactions. This tradition of experimentation led to the development of new kinds of experimental apparatus, such as the Leyden Jar; and new kinds of measuring instruments, such as the calorimeter, and improved versions of old ones, such as the thermometer. Experiments also produced new concepts, such as the University of Glasgow experimenter Joseph Black's notion of latent heat and Philadelphia intellectual Benjamin Franklin's characterization of electrical fluid as flowing between places of excess and deficit (a concept later reinterpreted in terms of positive and negative electric charge, charges). Franklin also showed that lightning is electricity in 1752. The accepted theory of heat in the 18th century viewed it as a kind of fluid, called caloric theory, caloric; although this theory was later shown to be erroneous, a number of scientists adhering to it nevertheless made important discoveries useful in developing the modern theory, including Joseph Black (1728–99) and Henry Cavendish (1731–1810). Opposed to this caloric theory, which had been developed mainly by the chemists, was the less accepted theory dating from Newton's time that heat is due to the motions of the particles of a substance. This mechanical theory gained support in 1798 from the cannon-boring experiments of Count Rumford (Benjamin Thompson), who found a direct relationship between heat and mechanical energy. While it was recognized early in the 18th century that finding absolute theories of electrostatic and magnetic force akin to Newton's principles of motion would be an important achievement, none were forthcoming. This impossibility only slowly disappeared as experimental practice became more widespread and more refined in the early years of the 19th century in places such as the newly established Royal Institution in London. Meanwhile, the analytical methods of rational mechanics began to be applied to experimental phenomena, most influentially with the French mathematician Joseph Fourier's analytical treatment of the flow of heat, as published in 1822. Joseph Priestley proposed an electrical inverse-square law in 1767, and Charles-Augustin de Coulomb introduced the inverse-square law of electrostatics in 1798. At the end of the century, the members of the French Academy of Sciences had attained clear dominance in the field. At the same time, the experimental tradition established by Galileo and his followers persisted. The Royal Society and the French Academy of Sciences were major centers for the performance and reporting of experimental work. Experiments in mechanics, optics, magnetism, static electricity, history of chemistry, chemistry, and physiology were not clearly distinguished from each other during the 18th century, but significant differences in explanatory schemes and, thus, experiment design were emerging. Chemical experimenters, for instance, defied attempts to enforce a scheme of abstract Newtonian forces onto chemical affiliations, and instead focused on the isolation and classification of chemical substances and reactions.


19th century


Mechanics

In 1821, William Rowan Hamilton, William Hamilton began his analysis of Hamilton's characteristic function. In 1835, he stated Hamiltonian mechanics, Hamilton's canonical equations of motion. In 1813, Peter Ewart supported the idea of the conservation of energy in his paper ''On the measure of moving force''. In 1829, Gaspard-Gustave Coriolis, Gaspard Coriolis introduced the terms of Work (physics), work (force times distance) and kinetic energy with the meanings they have today. In 1841, Julius Robert von Mayer, an amateur scientist, wrote a paper on the conservation of energy, although his lack of academic training led to its rejection. In 1847, Hermann von Helmholtz formally stated the law of conservation of energy.


Electromagnetism

In 1800, Alessandro Volta invented the electric battery (known as the voltaic pile) and thus improved the way electric currents could also be studied. A year later, Thomas Young (scientist), Thomas Young demonstrated the wave nature of light—which received strong experimental support from the work of Augustin-Jean Fresnel—and the principle of interference. In 1820, Hans Christian Ørsted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and within a week after Ørsted's discovery reached France, André-Marie Ampère discovered that two parallel electric currents will exert forces on each other. In 1821, Michael Faraday built an electricity-powered motor, while Georg Ohm stated his law of electrical resistance in 1826, expressing the relationship between voltage, current, and resistance in an electric circuit. In 1831, Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism – known as Faraday's law of induction, electromagnetic induction; these two discoveries are the basis of the electric motor and the electric generator, respectively.


Laws of thermodynamics

In the 19th century, the connection between heat and mechanical energy was established quantitatively by Julius Robert von Mayer and James Prescott Joule, who measured the mechanical equivalent of heat in the 1840s. In 1849, Joule published results from his series of experiments (including the paddlewheel experiment) which show that heat is a form of energy, a fact that was accepted in the 1850s. The relation between heat and energy was important for the development of steam engines, and in 1824 the experimental and theoretical work of Nicolas Léonard Sadi Carnot, Sadi Carnot was published. Carnot captured some of the ideas of thermodynamics in his discussion of the efficiency of an idealized engine. Sadi Carnot's work provided a basis for the formulation of the first law of thermodynamics—a restatement of the law of conservation of energy—which was stated around 1850 by William Thomson, 1st Baron Kelvin, William Thomson, later known as Lord Kelvin, and Rudolf Clausius. Lord Kelvin, who had extended the concept of absolute zero from gases to all substances in 1848, drew upon the engineering theory of Lazare Carnot, Sadi Carnot, and Émile Clapeyron–as well as the experimentation of James Prescott Joule on the interchangeability of mechanical, chemical, thermal, and electrical forms of work—to formulate the first law. Kelvin and Clausius also stated the second law of thermodynamics, which was originally formulated in terms of the fact that heat does not spontaneously flow from a colder body to a hotter. Other formulations followed quickly (for example, the second law was expounded in Thomson and Peter Guthrie Tait's influential work ''Treatise on Natural Philosophy'') and Kelvin in particular understood some of the law's general implications. The second Law was the idea that gases consist of molecules in motion had been discussed in some detail by Daniel Bernoulli in 1738, but had fallen out of favor, and was revived by Clausius in 1857. In 1850, Hippolyte Fizeau and Léon Foucault measured the speed of light in water and find that it is slower than in air, in support of the wave model of light. In 1852, Joule and Thomson demonstrated that a rapidly expanding gas cools, later named the Joule–Thomson effect or Joule–Kelvin effect. Hermann von Helmholtz puts forward the idea of the heat death of the universe in 1854, the same year that Clausius established the importance of ''dQ/T'' (Clausius's theorem) (though he did not yet name the quantity).


Statistical mechanics (a fundamentally new approach to science)

In 1859, James Clerk Maxwell discovered the Maxwell–Boltzmann distribution, distribution law of molecular velocities. Maxwell showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. In 1859, Maxwell worked out the mathematics of the distribution of velocities of the molecules of a gas. The wave theory of light was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related. In 1864 James Maxwell published his papers on a dynamical theory of the electromagnetic field, and stated that light is an electromagnetic phenomenon in the 1873 publication of Maxwell's ''A Treatise on Electricity and Magnetism, Treatise on Electricity and Magnetism''. This work drew upon theoretical work by German theoreticians such as Carl Friedrich Gauss and Wilhelm Eduard Weber, Wilhelm Weber. The encapsulation of heat in particulate motion, and the addition of electromagnetic forces to Newtonian dynamics established an enormously robust theoretical underpinning to physical observations. The prediction that light represented a transmission of energy in wave form through a "Luminiferous aether, luminiferous ether", and the seeming confirmation of that prediction with Helmholtz student Heinrich Hertz's 1888 detection of electromagnetic radiation, was a major triumph for physical theory and raised the possibility that even more fundamental theories based on the field could soon be developed. Experimental confirmation of Maxwell's theory was provided by Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. In 1887, Heinrich Hertz discovered the photoelectric effect. Research on the electromagnetic waves began soon after, with many scientists and inventors conducting experiments on their properties. In the mid to late 1890s Guglielmo Marconi developed a radio wave based wireless telegraphy system (see invention of radio). The atomic theory of matter had been proposed again in the early 19th century by the chemist John Dalton and became one of the hypotheses of the kinetic-molecular theory of gases developed by Clausius and James Clerk Maxwell to explain the laws of thermodynamics. The kinetic theory in turn led to a revolutionary approach to science, the statistical mechanics of Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903), which studies the statistics of microstates of a system and uses statistics to determine the state of a physical system. Interrelating the statistical likelihood of certain states of organization of these particles with the energy of those states, Clausius reinterpreted the dissipation of energy to be the statistical tendency of molecular configurations to pass toward increasingly likely, increasingly disorganized states (coining the term "entropy" to describe the disorganization of a state). The statistical versus absolute interpretations of the second law of thermodynamics set up a dispute that would last for several decades (producing arguments such as "Maxwell's demon"), and that would not be held to be definitively resolved until the behavior of atoms was firmly established in the early 20th century. In 1902, James Jeans found the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium.


Other developments

In 1822, botanist Robert Brown (Scottish botanist from Montrose), Robert Brown discovered Brownian motion: pollen grains in water undergoing movement resulting from their bombardment by the fast-moving atoms or molecules in the liquid. In 1834, Carl Gustav Jakob Jacobi, Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids (the Jacobi ellipsoid). In 1834, John Scott Russell, John Russell observed a nondecaying solitary water wave (soliton) in the Union Canal (Scotland), Union Canal near Edinburgh and used a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth. In 1835, Gaspard-Gustave Coriolis, Gaspard Coriolis examined theoretically the mechanical efficiency of waterwheels, and deduced the Coriolis effect. In 1842, Christian Doppler proposed the Doppler effect. In 1851, Léon Foucault showed the Earth's rotation with a huge
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward th ...
(Foucault pendulum). There were important advances in continuum mechanics in the first half of the century, namely formulation of elastic modulus, laws of elasticity for solids and discovery of Navier–Stokes equations for fluids.


20th century: birth of modern physics

At the end of the 19th century, physics had evolved to the point at which
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
could cope with highly complex problems involving macroscopic situations; thermodynamics and kinetic theory were well established; geometrical and physical optics could be understood in terms of electromagnetic waves; and the conservation laws for energy and momentum (and mass) were widely accepted. So profound were these and other developments that it was generally accepted that all the important laws of physics had been discovered and that, henceforth, research would be concerned with clearing up minor problems and particularly with improvements of method and measurement. However, around 1900 serious doubts arose about the completeness of the classical theories—the triumph of Maxwell's theories, for example, was undermined by inadequacies that had already begun to appear—and their inability to explain certain physical phenomena, such as the energy distribution in blackbody radiation and the photoelectric effect, while some of the theoretical formulations led to paradoxes when pushed to the limit. Prominent physicists such as Hendrik Lorentz, Emil Cohn, Ernst Wiechert and Wilhelm Wien believed that some modification of Maxwell's equations might provide the basis for all physical laws. These shortcomings of classical physics were never to be resolved and new ideas were required. At the beginning of the 20th century a major revolution shook the world of physics, which led to a new era, generally referred to as modern physics.


Radiation experiments

In the 19th century, experimenters began to detect unexpected forms of radiation: Wilhelm Röntgen caused a sensation with his discovery of X-rays in 1895; in 1896 Henri Becquerel discovered that certain kinds of matter emit radiation on their own accord. In 1897, J. J. Thomson discovered the electron, and new radioactive elements found by Marie Curie, Marie and Pierre Curie raised questions about the supposedly indestructible atom and the nature of matter. Marie and Pierre coined the term "radioactive decay, radioactivity" to describe this property of matter, and isolated the radioactive elements radium and polonium. Ernest Rutherford and Frederick Soddy identified two of Becquerel's forms of radiation with electrons and the element helium. Rutherford identified and named two types of radioactivity and in 1911 interpreted experimental evidence as showing that the atom consists of a dense, positively charged nucleus surrounded by negatively charged electrons. Classical theory, however, predicted that this structure should be unstable. Classical theory had also failed to explain successfully two other experimental results that appeared in the late 19th century. One of these was the demonstration by Albert A. Michelson and Edward W. Morley—known as the Michelson–Morley experiment—which showed there did not seem to be a preferred frame of reference, at rest with respect to the hypothetical luminiferous ether, for describing electromagnetic phenomena. Studies of radiation and radioactive decay continued to be a preeminent focus for physical and chemical research through the 1930s, when the discovery of nuclear fission by Lise Meitner and Otto Frisch opened the way to the practical exploitation of what came to be called Nuclear power, "atomic" energy.


Albert Einstein's theory of relativity

In 1905, a 26-year-old German physicist named Albert Einstein (then a patent clerk in Bern, Switzerland) showed how measurements of time and space are affected by motion between an observer and what is being observed. Einstein's radical theory of relativity revolutionized science. Although Einstein made many other important contributions to science, the theory of relativity alone represents one of the greatest intellectual achievements of all time. Although the concept of relativity was not introduced by Einstein, his major contribution was the recognition that the speed of light in a vacuum is constant, i.e. the same for all observers, and an absolute physical boundary for motion. This does not impact a person's day-to-day life since most objects travel at speeds much slower than light speed. For objects travelling near light speed, however, the theory of relativity shows that clocks associated with those objects will run more slowly and that the objects shorten in length according to measurements of an observer on Earth. Einstein also derived the famous equation, ''E'' = ''mc''2, which expresses the Mass–energy equivalence, equivalence of mass and energy.


Special relativity

Einstein argued that the speed of light was a constant in all Inertial frame of reference, inertial reference frames and that electromagnetic laws should remain valid independent of reference frame—assertions which rendered the ether "superfluous" to physical theory, and that held that observations of time and length varied relative to how the observer was moving with respect to the object being measured (what came to be called the "special relativity, special theory of relativity"). It also followed that mass and energy were interchangeable quantities according to the equation Mass–energy equivalence, ''E''=''mc''2. In another paper published the same year, Einstein asserted that electromagnetic radiation was transmitted in discrete quantities ("Quantum, quanta"), according to a constant that the theoretical physicist Max Planck had posited in 1900 to arrive at an accurate theory for the distribution of blackbody radiation—an assumption that explained the strange properties of the photoelectric effect. The special theory of relativity is a formulation of the relationship between physical observations and the concepts of space and time. The theory arose out of contradictions between electromagnetism and Newtonian mechanics and had great impact on both those areas. The original historical issue was whether it was meaningful to discuss the electromagnetic wave-carrying "ether" and motion relative to it and also whether one could detect such motion, as was unsuccessfully attempted in the Michelson–Morley experiment. Einstein demolished these questions and the ether concept in his special theory of relativity. However, his basic formulation does not involve detailed electromagnetic theory. It arises out of the question: "What is time?" Newton, in the ''Philosophiæ Naturalis Principia Mathematica, Principia'' (1686), had given an unambiguous answer: "Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external, and by another name is called duration." This definition is basic to all classical physics. Einstein had the genius to question it, and found that it was incomplete. Instead, each "observer" necessarily makes use of his or her own scale of time, and for two observers in relative motion, their time-scales will differ. This induces a related effect on position measurements. Space and time become intertwined concepts, fundamentally dependent on the observer. Each observer presides over his or her own space-time framework or coordinate system. There being no absolute frame of reference, all observers of given events make different but equally valid (and reconcilable) measurements. What remains absolute is stated in Einstein's relativity postulate: "The basic laws of physics are identical for two observers who have a constant relative velocity with respect to each other." Special relativity had a profound effect on physics: started as a rethinking of the theory of electromagnetism, it found a new symmetry (physics), symmetry law of nature, now called ''Poincaré symmetry'', that replaced the old Galilean symmetry. Special relativity exerted another long-lasting effect on dynamics (physics), dynamics. Although initially it was credited with the "unification of mass and energy", it became evident that relativistic dynamics established a firm ''distinction'' between rest mass, which is an invariant (observer independent) property of a particle or system of particles, and the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
and momentum of a system. The latter two are separately Conservation law (physics), conserved in all situations but not invariant with respect to different observers. The term ''mass'' in particle physics underwent a semantic change, and since the late 20th century it almost exclusively denotes the invariant mass, rest (or ''invariant'') mass.


General relativity

By 1916, Einstein was able to generalize this further, to deal with all states of motion including non-uniform acceleration, which became the general theory of relativity. In this theory Einstein also specified a new concept, the curvature of space-time, which described the gravitational effect at every point in space. In fact, the curvature of space-time completely replaced Newton's universal law of gravitation. According to Einstein, gravitational force in the normal sense is a kind of illusion caused by the geometry of space. The presence of a mass causes a curvature of space-time in the vicinity of the mass, and this curvature dictates the space-time path that all freely-moving objects must follow. It was also predicted from this theory that light should be subject to gravity - all of which was verified experimentally. This aspect of relativity explained the phenomena of light bending around the sun, predicted black holes as well as properties of the Cosmic microwave background radiation — a discovery rendering fundamental anomalies in the classic Steady-State hypothesis. For his work on relativity, the photoelectric effect and blackbody radiation, Einstein received the Nobel Prize in 1921. The gradual acceptance of Einstein's theories of relativity and the quantized nature of light transmission, and of Niels Bohr's model of the atom created as many problems as they solved, leading to a full-scale effort to reestablish physics on new fundamental principles. Expanding relativity to cases of accelerating reference frames (the "general relativity, general theory of relativity") in the 1910s, Einstein posited an equivalence between the inertial force of acceleration and the force of gravity, leading to the conclusion that space is curved and finite in size, and the prediction of such phenomena as gravitational lensing and the distortion of time in gravitational fields.


Quantum mechanics

Although relativity resolved the electromagnetic phenomena conflict demonstrated by Michelson and Morley, a second theoretical problem was the explanation of the distribution of electromagnetic radiation emitted by a black body; experiment showed that at shorter wavelengths, toward the ultraviolet end of the spectrum, the energy approached zero, but classical theory predicted it should become infinite. This glaring discrepancy, known as the ultraviolet catastrophe, was solved by the new theory of quantum mechanics. Quantum mechanics is the theory of atoms and subatomic systems. Approximately the first 30 years of the 20th century represent the time of the conception and evolution of the theory. The basic ideas of quantum theory were introduced in 1900 by Max Planck (1858–1947), who was awarded the Nobel Prize for Physics in 1918 for his discovery of the quantified nature of energy. The quantum theory (which previously relied in the "correspondence" at large scales between the quantized world of the atom and the continuities of the "Physics in the Classical Limit, classical" world) was accepted when the Compton Effect established that light carries momentum and can scatter off particles, and when Louis de Broglie asserted that matter can be seen as behaving as a wave in much the same way as electromagnetic waves behave like particles (wave–particle duality). In 1905, Einstein used the quantum theory to explain the photoelectric effect, and in 1913 the Danish physicist Niels Bohr used the same constant to explain the stability of Rutherford model, Rutherford's atom as well as the frequencies of light emitted by hydrogen gas. The quantized theory of the atom gave way to a full-scale quantum mechanics in the 1920s. New principles of a "quantum" rather than a "classical" mechanics, formulated in Matrix mechanics, matrix-form by Werner Heisenberg, Max Born, and Pascual Jordan in 1925, were based on the probabilistic relationship between discrete "states" and denied the possibility of causality. Quantum mechanics was extensively developed by Heisenberg, Wolfgang Pauli, Paul Dirac, and Erwin Schrödinger, who established an equivalent theory based on waves in 1926; but Heisenberg's 1927 "uncertainty principle" (indicating the impossibility of precisely and simultaneously measuring position and momentum) and the "Copenhagen interpretation" of quantum mechanics (named after Bohr's home city) continued to deny the possibility of fundamental causality, though opponents such as Einstein would metaphorically assert that "God does not play dice with the universe". The new quantum mechanics became an indispensable tool in the investigation and explanation of phenomena at the atomic level. Also in the 1920s, the Indian scientist Satyendra Nath Bose's work on photons and quantum mechanics provided the foundation for Bose–Einstein statistics, the theory of the Bose–Einstein condensate. The spin–statistics theorem established that any particle in quantum mechanics may be either a boson (statistically Bose–Einstein) or a fermion (statistically Fermi–Dirac statistics, Fermi–Dirac). It was later found that all Elementary particle, fundamental bosons transmit forces, such as the photon that transmits electromagnetism. Fermions are particles "like electrons and nucleons" and are the usual constituents of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
. Fermi–Dirac statistics later found numerous other uses, from astrophysics (see Degenerate matter) to semiconductor design.


Contemporary and particle physics


Quantum field theory

As the philosophically inclined continued to debate the fundamental nature of the universe, quantum theories continued to be produced, beginning with Paul Dirac's formulation of a relativistic quantum theory in 1928. However, attempts to quantize electromagnetic theory entirely were stymied throughout the 1930s by theoretical formulations yielding infinite energies. This situation was not considered adequately resolved until after World War II ended, when Julian Schwinger, Richard Feynman and Sin-Itiro Tomonaga independently posited the technique of renormalization, which allowed for an establishment of a robust quantum electrodynamics (QED). Meanwhile, new theories of Elementary particle, fundamental particles proliferated with the rise of the idea of the Quantum field theory, quantization of fields through "Exchange interaction, exchange forces" regulated by an exchange of short-lived Virtual particle, "virtual" particles, which were allowed to exist according to the laws governing the uncertainties inherent in the quantum world. Notably, Hideki Yukawa proposed that the positive charges of the Atomic nucleus, nucleus were kept together courtesy of a powerful but short-range force mediated by a particle with a mass between that of the electron and proton. This particle, the "pion", was identified in 1947 as part of what became a slew of particles discovered after World War II. Initially, such particles were found as Ionization, ionizing radiation left by cosmic rays, but increasingly came to be produced in newer and more powerful particle accelerators. Outside particle physics, significant advances of the time were: * the invention of the laser (1964 Nobel Prize in Physics); * the theoretical and experimental research of superconductivity, especially the invention of a Ginzburg–Landau theory, quantum theory of superconductivity by Vitaly Ginzburg and Lev Landau (1962 Nobel Prize in Physics) and, later, its explanation via Cooper pairs (1972 Nobel Prize in Physics). The Cooper pair was an early example of quasiparticles.


Unified field theories

Einstein deemed that all fundamental interactions in nature can be explained in a single theory. Unified field theories were numerous attempts to "merge" several interactions. One of many formulations of such theories (as well as field theories in general) is a ''gauge theory'', a generalization of the idea of symmetry. Eventually the Standard Model (see below) succeeded in unification of strong, weak, and electromagnetic interactions. All attempts to unify gravitation with something else failed.


Standard Model

When parity (physics), parity was broken in weak interactions by Chien-Shiung Wu in her Wu experiment, experiment, a series of discoveries were created thereafter. The interaction of these particles by scattering and Particle decay, decay provided a key to new fundamental quantum theories. Murray Gell-Mann and Yuval Ne'eman brought some order to these new particles by classifying them according to certain qualities, beginning with what Gell-Mann referred to as the "Eightfold way (physics), Eightfold Way". While its further development, the quark model, at first seemed inadequate to describe Strong interaction, strong nuclear forces, allowing the temporary rise of competing theories such as the S-Matrix, the establishment of quantum chromodynamics in the 1970s finalized a set of fundamental and exchange particles, which allowed for the establishment of a "Standard Model, standard model" based on the mathematics of Gauge theory, gauge invariance, which successfully described all forces except for gravitation, and which remains generally accepted within its domain of application. The Standard Model, based on the Yang–Mills theory groups the electroweak interaction theory and quantum chromodynamics into a structure denoted by the gauge group SU(3)×SU(2)×U(1). The formulation of the unification of the electromagnetic and weak interactions in the standard model is due to Abdus Salam, Steven Weinberg and, subsequently, Sheldon Glashow. Electroweak theory was later confirmed experimentally (by observation of Neutral current, neutral weak currents), and distinguished by the 1979 Nobel Prize in Physics. Since the 1970s, fundamental particle physics has provided insights into early universe cosmology, particularly the Big Bang theory proposed as a consequence of Einstein's general relativity, general theory of relativity. However, starting in the 1990s, astronomical observations have also provided new challenges, such as the need for new explanations of galactic stability ("dark matter") and the Accelerating universe, apparent acceleration in the expansion of the universe ("dark energy"). While accelerators have confirmed most aspects of the Standard Model by detecting expected particle interactions at various collision energies, no theory reconciling general relativity with the Standard Model has yet been found, although supersymmetry and string theory were believed by many theorists to be a promising avenue forward. The Large Hadron Collider, however, which began operating in 2008, has failed to find any evidence whatsoever that is supportive of supersymmetry and string theory.


Cosmology

Cosmology may be said to have become a serious research question with the publication of Einstein's General Theory of Relativity in 1915 although it did not enter the scientific mainstream until the period known as the "Golden age of general relativity". About a decade later, in the midst of what was dubbed the "Great Debate (astronomy), Great Debate", Edwin Hubble, Hubble and Vesto Slipher, Slipher discovered the expansion of universe in the 1920s measuring the redshifts of Doppler spectra from galactic nebulae. Using Einstein's general relativity, Georges Lemaître, Lemaître and George Gamow, Gamow formulated what would become known as the big bang theory. A rival, called the steady state theory, was devised by Fred Hoyle, Hoyle, Thomas Gold, Gold, Jayant Narlikar, Narlikar and Hermann Bondi, Bondi. Cosmic background radiation was verified in the 1960s by Arno Allan Penzias, Penzias and Robert Woodrow Wilson, Wilson, and this discovery favoured the big bang at the expense of the steady state scenario. Later work was by George Smoot, Smoot et al. (1989), among other contributors, using data from the Cosmic Background explorer (CoBE) and the Wilkinson Microwave Anisotropy Probe (WMAP) satellites that refined these observations. The 1980s (the same decade of the COBE measurements) also saw the proposal of Inflation (cosmology), inflation theory by Alan Guth. Recently the problems of dark matter and dark energy have risen to the top of the cosmology agenda.


Higgs boson

On July 4, 2012, physicists working at CERN's Large Hadron Collider announced that they had discovered a new subatomic particle greatly resembling the Higgs boson, a potential key to an understanding of why elementary particles have mass and indeed to the existence of diversity and life in the universe. For now, some physicists are calling it a "Higgslike" particle. Joe Incandela, of the University of California, Santa Barbara, said, "It's something that may, in the end, be one of the biggest observations of any new phenomena in our field in the last 30 or 40 years, going way back to the discovery of quarks, for example." Michael Turner (cosmologist), Michael Turner, a cosmologist at the University of Chicago and the chairman of the physics center board, said: Peter Higgs was one of six physicists, working in three independent groups, who, in 1964, invented the notion of the Higgs field ("cosmic molasses"). The others were Tom Kibble of Imperial College London, Imperial College, London; C. R. Hagen, Carl Hagen of the University of Rochester; Gerald Guralnik of Brown University; and François Englert and Robert Brout, both of Université libre de Bruxelles. Although they have never been seen, Higgslike fields play an important role in theories of the universe and in string theory. Under certain conditions, according to the strange accounting of Einsteinian physics, they can become suffused with energy that exerts an antigravitational force. Such fields have been proposed as the source of an enormous burst of expansion, known as inflation, early in the universe and, possibly, as the secret of the dark energy that now seems to be speeding up the expansion of the universe.


Physical sciences

With increased accessibility to and elaboration upon advanced analytical techniques in the 19th century, physics was defined as much, if not more, by those techniques than by the search for universal principles of motion and energy, and the fundamental nature of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
. Fields such as acoustics, geophysics, astrophysics, aerodynamics, Plasma (physics), plasma physics, Cryogenics, low-temperature physics, and solid-state physics joined
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, fluid dynamics, electromagnetism, and
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
as areas of physical research. In the 20th century, physics also became closely allied with such fields as Electrical engineering, electrical, Aerospace engineering, aerospace and Materials science, materials engineering, and physicists began to work in government and industrial laboratories as much as in academic settings. Following World War II, the population of physicists increased dramatically, and came to be centered on the United States, while, in more recent decades, physics has become a more international pursuit than at any time in its previous history.


Seminal physics publications


See also


Notes


References


Sources

* . * * . * . * . * . * . * . * . * * . * . * . * . * . * . * * . * . * . * . * . * . * . * . * . * * . * . * . * . * .


Further reading

* Buchwald, Jed Z. and Robert Fox, eds. ''The Oxford Handbook of the History of Physics'' (2014) 976pp
excerpt
* * * . * * * . * . * . * A selection of 56 articles, written by physicists. Commentaries and notes by Lloyd Motz and Dale McAdoo. * de Haas, Paul
"Historic Papers in Physics (20th Century)"


External links


"Selected Works about Isaac Newton and His Thought"
fro
''The Newton Project''
{{DEFAULTSORT:History Of Physics History of physics, History of science by discipline, Physics