Anaphase lag
   HOME

TheInfoList



OR:

Anaphase lag is a consequence of an event during
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ...
where sister
chromatid A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chr ...
s do not properly separate from each other because of improper spindle formation. The chromosome or chromatid does not properly migrate during anaphase and the daughter cells will lose some genetic information. It is one of many causes of
aneuploidy Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with an ...
. This event can occur during both
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
and
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintai ...
with unique repercussions. In either case, anaphase lag will cause one daughter cell to receive a complete set of chromosomes while the other lacks one paired set of chromosomes, creating a form of
monosomy Monosomy is a form of aneuploidy with the presence of only one chromosome from a pair. Partial monosomy occurs when a portion of one chromosome in a pair is missing. Human monosomy Human conditions due to monosomy: * Turner syndrome – People wit ...
. Whether the cell survives depends on which sister chromatid was lost and the background genomic state of the cell. The passage of abnormal numbers of chromosomes will have unique consequences with regards to mosaicism and development as well as the progression and heterogeneity of cancers.


Mechanisms

There are two notable mechanisms that cause Anaphase Lag, each of which are characterized by merotelic attachments of kinetochores to the
microtubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27  nm and have an inner diameter between 11 a ...
responsible for chromatid separation. Merotelic attachments occur when a single
centromere The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers ...
kinetochore attaches to
microtubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27  nm and have an inner diameter between 11 a ...
originating from both spindle poles of the dividing cell. The merotelic attachments can occur in two ways: centrosome spindle attachments from both poles on the same chromatid kinetochore or the formation of a third centrosome whose microtubule spindles attach to a chromatid kinetochore. Because the chromatid is being pulled in two opposing directions or away from the correct
centriole In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and are ...
, it cannot migrate to the mass of segregated chromatids at either pole. If the migration is significantly delayed the reformation of nuclei will begin to occur without a full complement of chromosomes. This
nuclear envelope The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membr ...
formation is also seen for the lone lagging sister chromatid, forming a micronucleus. The micronucleus has the capacity to persist in the daughter cell but with abnormal replication and maintenance machinery. This allows for the accumulation of mutations, increasing the potential for future miss-segregation events. In total these events cause problematic aneuploid cells with increased genomic instability. This has important implications in the development and persistence of cancers as well as debilitating developmental diseases.


Hallmark of cancer

One of the hallmarks of cancer formation and persistence is genomic instability, referring to the increased frequency in sequence mutation, chromosome rearrangement, and aneuploidy. The instability allows a cancerous growth to increasingly diverge from normal cell growth and division, with the potential to gain new traits such as
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splittin ...
, immune system evasion, and loss of
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
checkpoint genes. Aneuploidy is a drastic divergence from the normal
karyotype A karyotype is the general appearance of the complete set of metaphase chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is disce ...
, as such the potential heterogeneity within these cells makes diagnosis and treatment increasingly difficult.


Genomic causes

The increasing importance of genomic instability on cancer progression has been emphasized in recent years. There are many ways to cause aneuploidy, however the genomic predispositions for these events are less well understood. In regards to the merotelic kinetochore attachments associated with anaphase lag, several genes have been implicated. Aurora B is a
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
active in late
metaphase Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). These chromosomes, carrying genetic information, a ...
, and has been shown to function as a checkpoint for the proper attachments of
centriole In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and are ...
spindles to the chromatid kinetochores. When Aurora B was partially inhibited by a small molecule drug, Cimini et al. observed lagging chromatids at increasing frequency. Similarly, mutations to the gene Stag2 have been associated with increased aneuploidy in cancers. Stag2 encodes a cohesin protein responsible for holding sister chromatids together pre-anaphase. Imaging of cells with Stag2 knock-outs showed increased frequency of lagging anaphase chromatids; subsequent gene correction in human
glioblastoma Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ...
cell lines reduced the occurrence of this genomic instability.


Prognosis and treatment

Consequent of this genomic instability, the resulting cancer cells have the potential to diverge in sequence and gain new traits. This intratumoral heterogeneity creates a tumor mass with different genomic backgrounds as well as unique cellular traits and drug susceptibilities. Several research groups have shown that heterogeneity and genomic instability are heavily correlated with poor patient outcomes and aggressive cancers. Chang-Min Choi et al. examined the survival of individuals with adenocarcinoma of the lung. Those individuals with higher rates of chromosome instability were associated with worse 5-year survival curves. This was similarly observed in a colorectal study by Walther et al. These more aggressive heterogenous tumors also provide unique difficulties for treatment regimens. To support this hypothesis, Duesberg et al. tested drug susceptibility on cell lines with and without aneuploidy. While the diploid cell lines remained drug sensitive, the aneuploid lines showed marked increases in mutation rates, drug resistance, and unintended morphological changes to cell phenotypes. As the importance of genomic instability in cancer prognosis/treatment continues, identifying the causes and consequences of mechanisms such as anaphase lag will be critical to understanding how cancer develops as well as developing better multi-target therapies.


References

{{DEFAULTSORT:Anaphase Lag Chromosomal abnormalities Cytogenetics Meiosis Mitosis