HOME
The Info List - Alchemy And Chemistry In Medieval Islam


--- Advertisement ---



Alchemy
Alchemy
and chemistry in Islam
Islam
refers to the study of both traditional alchemy and early practical chemistry (the early chemical investigation of nature in general) by scholars in the medieval Islamic world. The word alchemy was derived from the Arabic
Arabic
word كيمياء or kīmiyāʾ.[1][2] and may ultimately derive from the ancient Egyptian word kemi, meaning black.[2] After the fall of the Western Roman Empire, the focus of alchemical development moved to the Caliphate
Caliphate
and the Islamic civilization. Much more is known about Islamic alchemy as it was better documented; most of the earlier writings that have come down through the years were preserved as Arabic
Arabic
translations.[3]

Contents

1 Definition and relationship with medieval western sciences

1.1 Contributions of Islamic alchemists to mystical alchemy

2 Alchemists and works

2.1 Khālid ibn Yazīd 2.2 Jābir ibn Ḥayyān 2.3 Abū Bakr al-Rāzī 2.4 Ibn Umayl 2.5 Al-Tughrai 2.6 Al-Jildaki

3 Alchemical and chemical theory 4 Processes and equipment 5 See also 6 References 7 Further reading 8 External links

Definition and relationship with medieval western sciences[edit] In considering Islamic sciences as a distinct, local practice, it is important to define words such as "Arabic," "Islamic," "alchemy," and "chemistry." In order to gain a better grasp on the concepts discussed in this article, it is important to come to an understanding of what these terms mean historically. This may also help to clear up any misconceptions regarding the possible differences between alchemy and early chemistry in the context of medieval times. As A.I. Sabra writes in his article entitled, "Situating Arabic
Arabic
Science: Location versus Essence," "the term Arabic
Arabic
(or Islamic) science denotes the scientific activities of individuals who lived in a region that roughly extended chronologically from the eighth century A.D. to the beginning of the modern era, and geographically from the Iberian Peninsula and North Africa to the Indus
Indus
valley and from southern Arabia to the Caspian Sea - that is, the region covered for most of that period by what we call Islamic civilization, and in which the results of the activities referred to were for the most part expressed in the Arabic language."[4] This definition of Arabic
Arabic
science provides a sense that there are many distinguishing factors to contrast with science of the Western hemisphere regarding physical location, culture, and language, though there are also several similarities in the goals pursued by scientists of the Middle Ages, and in the origins of thinking from which both were derived. Lawrence Principe
Lawrence Principe
describes the relationship between alchemy and chemistry in his article entitled, " Alchemy
Alchemy
Restored," in which he states, "The search for metallic transmutation — what we call "alchemy" but that is more accurately termed "Chrysopoeia" — was ordinarily viewed in the late seventeenth century as synonymous with or as a subset of chemistry." [5] He therefore proposes that the early spelling of chemistry as "chymistry" refers to a unified science including both alchemy and early chemistry. Principe goes on to argue that, "[a]ll their chymical activities were unified by a common focus on the analysis, synthesis, transformation, and production of material substances."[5] Therefore, there is not a defined contrast between the two fields until the early 18th century.[5] Though Principe's discussion is centered on the Western practice of alchemy and chemistry, this argument is supported in the context of Islamic science as well when considering the similarity in methodology and Aristotelian inspirations, as noted in other sections of this article. This distinction between alchemy and early chemistry is one that lies predominately in semantics, though with an understanding of previous uses of the words, we can better understand the historical lack of distinct connotations regarding the terms despite their altered connotations in modern contexts. The transmission of these sciences throughout the Eastern and Western hemispheres is also important to understand when distinguishing the sciences of both regions. The beginnings of cultural, religious, and scientific diffusion of information between the Western and Eastern societies began with the successful conquests of Alexander the Great (334-323 B.C). By establishing territory throughout the East, Alexander the Great
Alexander the Great
allowed greater communication between the two hemispheres that would continue throughout history. A thousand years later, those Asian territories conquered by Alexander the Great, such as Iraq
Iraq
and Iran, became a center of religious movements with a focus on Christianity, Manicheism, and Zoroastrianism, which all involve sacred texts as a basis, thus encouraging literacy, scholarship, and the spread of ideas.[6] Aristotelian logic was soon included in the curriculum a center for higher education in Nisibis, located east of the Persian border, and was used to enhance the philosophical discussion of theology taking place at the time.[7] The Qur'an, the holy book of Islam, became an important source of "theology, morality, law, and cosmology," in what Lindberg describes as "the centerpiece of Islamic education." After the death of Muhammed in 632, Islam
Islam
was extended throughout the Arabian peninsula, Byzantium, Persia, Syria, Egypt, and Israel by means of military conquest, solidifying the region as a predominately Muslim one.[8] While the expansion of the Islamic empire was an important factor in diminishing political barriers between such areas, there was still a wide range of religions, beliefs, and philosophies that could move freely and be translated throughout the regions. This development made way for contributions to be made on behalf of the East towards the Western conception of sciences such as alchemy. While this transmission of information and practices allowed for the further development of the field, and though both were inspired by Aristotelian logic and Hellenic philosophies, as well as by mystical aspects[9] it is also important to note that cultural and religious boundaries remained. The mystical and religious elements discussed previously in the article distinguished Islamic alchemy from that of its Western counterpart, given that the West had predominately Christian ideals on which to base their beliefs and results, while the Islamic tradition differed greatly. While the motives differed in some ways, as did the calculations, the practice and development of alchemy and chemistry was similar given the contemporaneous nature of the fields and the ability with which scientists could transmit their beliefs. Contributions of Islamic alchemists to mystical alchemy[edit] Marie-Louise von Franz describes in her introduction to Ibn Umails "Book of the Explanation of the Symbols — Kitāb Ḥall ar-Rumūz" the contributions of Islamic alchemy as follows: In the 7th to 8th century, Islamic scholars were mainly concerned with translating ancient Hermetic-Gnostic texts without changing them. Gradually they began "'confronting' their content with the Islamic religion" and began "to think independently and experiment themselves in the realm of alchemy". Thus they added "an emphasis on the monotheistic outlook" (tawḥīd) and more and more creating a synopsis of the diverse antique traditions. Thus unifying their meaning, the Islamic scholars arrived at the idea, that the secret and aim of alchemy were the achievement of "one inner psychic experience, namely the God-image" and that stone, water, prima materia etc. were "all aspects of the inner mystery through which the alchemist unites with the transendent God". Secondly, they added "a passionate feeling tone" by using much more a poetic language than the antique Hermetists did, also giving "a greater emphasis on the coniunctio motif", i.e. images of the union of male and female, sun and moon, king and queen etc.[10] "The mystical masters of Islam
Islam
understood alchemy as a transformative process of the alchemist's psyche. The fire which promoted this transformation was the love of God."[11] Alchemists and works[edit] Khālid ibn Yazīd[edit] According to the bibliographer Ibn al-Nadīm, the first Muslim alchemist was Khālid ibn Yazīd, who is said to have studied alchemy under the Christian Marianos of Alexandria. The historicity of this story is not clear; according to M. Ullmann, it is a legend.[12][13] According to Ibn al-Nadīm and Ḥajjī Khalīfa, he is the author of the alchemical works Kitāb al-kharazāt (The Book of Pearls), Kitāb al-ṣaḥīfa al-kabīr (The Big Book of the Roll), Kitāb al-ṣaḥīfa al-saghīr (The Small Book of the Roll), Kitāb Waṣīyatihi ilā bnihi fī-ṣ-ṣanʿa (The Book of his Testament to his Son about the Craft), and Firdaws al-ḥikma (The Paradise of Wisdom), but again, these works may be pseudepigraphical.[14][13][12] Jābir ibn Ḥayyān[edit]

15th century European impression of "Geber"

Jābir ibn Ḥayyān
Jābir ibn Ḥayyān
(Persian: جابرحیان‎, Arabic: جابر بن حیان, Latin Geberus; usually rendered in English as Geber) may have been born in 721 or 722, in Persian city of Tus, Iran, and have been the son of Ḥayyān, a druggist from the tribe of al-Azd who originally lived in Kufa. When young Jābir studied in Arabia under Ḥarbī al-Ḥimyarī. Later, he lived in Kufa, and eventually became a court alchemist for Hārūn al-Rashīd, in Baghdad. Jābir was friendly with the Barmecides and became caught up in their disgrace in 803. As a result, he returned to Kufa. According to some sources, he died in Tus in 815. A large corpus of works is ascribed to Jābir, so large that it's difficult to believe he wrote them all himself. According to the theory of Paul Kraus, many of these works should be ascribed to later Ismaili authors. It includes the following groups of works: The One Hundred and Twelve Books; The Seventy Books; The Ten Books of Rectifications; and The Books of the Balances. This article will not distinguish between Jābir and the authors of works attributed to him.[15] Abū Bakr al-Rāzī[edit] Abū Bakr ibn Zakariyā’ al-Rāzī (Latin: Rhazes), born around 864 in Rayy, was mainly known as a Persian physician. He wrote a number of alchemical works, including the Sirr al-asrār (Latin: Secretum secretorum; English: Secret of Secrets.)[16][17] Ibn Umayl[edit] Muḥammad ibn Umayl al-Tamīmī was a 10th-century alchemist of the symbolic-mystical branch. One of his surviving works is Kitāb al-māʿ al-waraqī wa-l-arḍ al-najmiyya (The Book on Silvery Water and Starry Earth). This work is a commentary on his poem, the Risālat al-shams ilā al-hilāl (The Epistle of the Sun to the Crescent Moon) and contains numerous quotations from ancient authors.[18] Ibn Umayl had important influence on medieval Western (Latin) alchemy,[19] where his work is found under different names, mainly as Senior or as Zadith.[20] His "Silvery Water" e.g. was reprinted as "The Chemical Tables of Senior Zadith" in the collection of alchemical texts: Theatrum Chemicum, and commented upon by Pseudo Aquinas in Aurora Consurgens. They both also give his (modified) image of the sage holding a chemical table (see image above).[21] Al-Tughrai[edit] Al-Tughrai was an 11th–12th century Persian physician.[22] whose work theMasabih al-hikma wa-mafatih al-rahma (The Lanterns of Wisdom and the Keys of Mercy) is one of the earliest works of material sciences. Al-Jildaki[edit] Al-Jildaki
Al-Jildaki
who was a Persian alchemist urged in his book the need for experimental chemistry and mentioned many experiments Kanz al-ikhtisas fi ma'rifat al-khawas by Abu 'l-Qasim Aydamir al-Jildaki. Alchemical and chemical theory[edit]

Elemental scheme used by Jābir[23]

Hot Cold

Dry Fire Earth

Moist Air Water

Jābir analyzed each Aristotelian element in terms of Aristotle's four basic qualities of hotness, coldness, dryness, and moistness. For example, fire is a substance that is hot and dry, as shown in the table.[23][24][25] According to Jābir, in each metal two of these qualities were interior and two were exterior. For example, lead was externally cold and dry but internally hot and moist; gold, on the other hand, was externally hot and moist but internally cold and dry. He believed that metals were formed in the Earth by fusion of sulfur (giving the hot and dry qualities) with mercury (giving the cold and moist.) These elements, mercury and sulfur, should be thought of as not the ordinary elements but ideal, hypothetical substances. Which metal is formed depends on the purity of the mercury and sulfur and the proportion in which they come together.[23] The later alchemist al-Rāzī followed Jābir's mercury-sulfur theory, but added a third, salty, component.[26] Thus, Jābir theorized, by rearranging the qualities of one metal, a different metal would result.[27] By this reasoning, the search for the philosopher's stone was introduced to Western alchemy.[28][29] Jābir developed an elaborate numerology whereby the root letters of a substance's name in Arabic, when treated with various transformations, held correspondences to the element's physical properties.[23] Processes and equipment[edit] Al-Rāzī mentions the following chemical processes: distillation, calcination, solution, evaporation, crystallization, sublimation, filtration, amalgamation, and ceration (a process for making solids pasty or fusible.)[30] Some of these operations (calcination, solution, filtration, crystallization, sublimation and distillation) are also known to have been practiced by pre-Islamic Alexandrian alchemists.[31] In his Secretum secretorum, Al-Rāzī mentions the following equipment:[32]

Tools for melting substances (li-tadhwīb): hearth (kūr), bellows (minfākh or ziqq), crucible (bawtaqa), the būt bar būt (in Arabic, from Persian) or botus barbatus (in Latin), ladle (mighrafa or milʿaqa), tongs (māsik or kalbatān), scissors (miqṭaʿ), hammer (mukassir), file (mibrad). Tools for the preparation of drugs (li-tadbīr al-ʿaqāqīr): cucurbit and still with evacuation tube (qarʿ or anbīq dhū khatm), receiving matras (qābila), blind still (without evacuation tube) (al-anbīq al-aʿmā), aludel (al-uthāl), goblets (qadaḥ), flasks (qārūra, plural quwārīr), rosewater flasks (mā’ wardiyya), cauldron (marjal or tanjīr), earthenware pots varnished on the inside with their lids (qudūr and makabbāt), water bath or sand bath (qidr), oven (al-tannūr in Arabic, athanor in Latin), small cylindirical oven for heating aludel (mustawqid), funnels, sieves, filters, etc.

See also[edit]

Chinese alchemy Islamic science

References[edit]

^ "alchemy", entry in The Oxford English Dictionary, J. A. Simpson and E. S. C. Weiner, vol. 1, 2nd ed., 1989, ISBN 0-19-861213-3. ^ a b p. 854, " Arabic
Arabic
alchemy", Georges C. Anawati, pp. 853-885 in Encyclopedia of the history of Arabic
Arabic
science, eds. Roshdi Rashed and Régis Morelon, London: Routledge, 1996, vol. 3, ISBN 0-415-12412-3. ^ Burckhardt, Titus (1967). "Alchemy: science of the cosmos, science of the soul". Stuart & Watkins: 46.  ^ Sabra 1996, P. 655 ^ a b c Principe 2011, P. 306 ^ Lindberg 2007, P. 163 ^ Lindberg 2007, P. 164 ^ Lindberg 2007, P. 166 ^ Marie-Louise von Franz (CALA IA) 2006, p. 26 ^ Marie-Louise von Franz (CALA IA) 2006, p. 26-27. ^ Marie-Louise von Franz (CALA IA) 2006, p. 39. ^ a b pp. 63-66, Alchemy, E. J. Holmyard, New York: Dover Publications, Inc., 1990 (reprint of 1957 Penguin Books edition), ISBN 0-486-26298-7. ^ a b M. Ullmann, "Ḵh̲ālid b. Yazīd b. Muʿāwiya, abū hās̲h̲im.", in Encyclopaedia of Islam, second edition, edited by P. Bearman, Th. Bianquis, C. E. Bosworth, E. van Donzel, and W.P. Heinrichs, Brill, 2011. Brill Online. Accessed 20 January 2011. <http://www.brillonline.nl/subscriber/entry?entry=islam_SIM-4151> ^ Anawati 1996, p. 864. ^ pp. 68-82, Holmyard 1990. ^ pp. 867-879, Anawati 1996. ^ pp. 86-92, Holmyard 1990. ^ pp. 870-872, Anawati 1996. ^ Marie-Louise von Franz (CALA IA) 2006, chapter: "Life and Work of Muḥammad ibn Umail", p. 55 ^ Julius Ruska, "Senior Zadith = Ibn Umail." Orientalistische Literaturzeitung 31, 1928, pp. 665-666 ^ Theodor Abt: "The Transmission of Ibn Umail's Vision to the Occident" in: Book of the Explanation of the Symbols - Kitāb Hall ar-Rumūz by Muhammad ibn Umail. Psychological Commentary by Theodor Abt. Corpus Alchemicum Arabicum (CALA) IB, Living Human Heritage Publications, Zurich 2009, p. 59-64. ^ El Khadem, H. S. (1995). "A Lost Text By Zosimos Reproduced in an Old Alchemy
Alchemy
Book". Journal of Chemical Education. 72 (9): 774. doi:10.1021/ed072p774.  ^ a b c d pp. 74-82, Holmyard 1990. ^ Holmyard 1990, pp. 21-22. ^ Aristotle, On Generation and Corruption, II.3, 330a-330b. ^ Holmyard 1990, p. 88. ^ Burckhardt, Titus (1967). "Alchemy: science of the cosmos, science of the soul". Stuart & Watkins: 29.  ^ Ragai, Jehane (1992). "The Philosopher's Stone: Alchemy
Alchemy
and Chemistry". Journal of Comparative Poetics. 12 (Metaphor and Allegory in the Middle Ages): 58–77. doi:10.2307/521636.  ^ Holmyard, E. J. (1924). "Maslama al-Majriti and the Rutbatu'l-Hakim". Isis. 6 (3): 293–305. doi:10.1086/358238.  ^ p. 89, Holmyard 1990. ^ p. 23, A short history of chemistry, James Riddick Partington, 3rd ed., Courier Dover Publications, 1989, ISBN 0-486-65977-1. ^ Anawati 1996, p. 868

Further reading[edit]

Lindberg, David C. (2007). "Islamic Science". The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, Prehistory to A.D. 1450. Chicago: U of Chicago. pp. 163–92. ISBN 978-0-226-48205-7.  Principe, Lawrence M. (2011). " Alchemy
Alchemy
Restored". Isis. 102 (2): 305–12. doi:10.1086/660139.  Sabra, A. I. (1996). "Situating Arabic
Arabic
Science: Locality versus Essence". Isis. 87 (4): 654–70. doi:10.1086/357651. JSTOR 235197.  von Franz, Marie-Louise (2006). "Introduction". In Theodor Abt. Book of the Explanation of the Symbols. Kitāb Ḥall ar-Rumūz by Muḥammad ibn Umail. Psychological commentary by Marie-Louise von Franz. Corpus Alchemicum Arabicum (CALA) IA. Zurich: Living Human Heritage Publications. pp. 15–58. ISBN 3952260835. 

External links[edit]

"How Greek Science Passed to the Arabs" by De Lacy O'Leary

v t e

Alchemy
Alchemy
and chemistry in medieval Islam

Alchemists

7th century

Khālid ibn Yazīd

8th century

Harbi al-Himyari Ja'far al-Sadiq

9th century

Jābir ibn Hayyān Al-Kindi Abbas ibn Firnas Ahmad ibn Yahya al-Baladhuri Ziryab Dhul-Nun al-Misri

10th century

Ibn Wahshiyya Muhammed ibn Umail al-Tamimi Al-Zahrawi Al-Razi Al-Farabi Ibn al-Nadim Al-Majriti Abu Mansur Muwaffaq

11th century

Ibn al-Wafid Al-Bīrūnī Avicenna Al-Khwarizmi al-Khati Miskawayh Al-Mu'izz ibn Badis Ahmad ibn 'Imad al-Din

12th century

Al-Khazini Artephius Al-Tughrai Al-Nabarawi Abu'l Hasan ibn Arfa Ra'a Al-Jawbari Abu al-Salt

13th century

Ibn al-Baitar Abu al-Abbas al-Nabati Al-Kātibī Attar of Nishapur Al-Simawi Hasan al-Rammah Mansur al-Kamili

14th century

Ibn Rassam Al-Jaldaki Abul Ashba ibn Tammam

Concepts

Takwin Philosopher's stone Al-iksīr Alembic Athanor

Works

Kitab al-Kimya Kitab al-Sab'een

v t e

Islamic studies

Arts

Arabesque Architecture Calligraphy The garden Geometric pattern Literature Music Poetry Pottery Influences on Western art

Economics

History Agency Banking Capitalism Poverty Socialism Trust Usury Welfare

History

Timeline Historiography Early social change Early conquests Golden Age World contributions to Medieval Europe Reception in Early Modern Europe

Law and politics

Anarchism Democracy

consensus consultation

Feminism Jurisprudence

use of analogy decision-making schools

Peace Quietism Secularism Early social change State

Philosophy

Early Contemporary Theology

dialectic

Ethics Logic Astrology Early sociology

solidarity

Medieval science

Timeline Alchemy
Alchemy
and chemistry Astronomy

cosmology

Geography and cartography Inventions Mathematics Medicine

ophthalmology

Physics Psychology

Other fields

Arab Agricultural Revolution Education

teaching permission elementary school

Sufi studies

mysticism cosmology philosophy

v t e

Alchemy

Concepts

Alkahest Azoth Chrysopoeia Classical planets (Suns) Elements Elixir of life Homunculus In art and entertainment Philosopher's stone Substances Symbols

Branches

Daoist Hindu Islamic Spagyric Iatrochemistry Chemistry

Magnum opus

Nigredo Albedo Citrinitas Rubedo

Processes

Calcination Ceration Cohobation Congelation Digestion Distillation Fermentation Filtration Fixation Multiplication Projection Solution Sublimation

Alchemists

Agastya Arthur Dee Cleopatra the Alchemist Fulcanelli Ge Hong Heinrich Cornelius Agrippa Isaac Newton Jābir ibn Hayyān John Dee Albertus Magnus Khālid ibn Yazīd Bernard of Treviso Mary the Jewess Michael Maier Nicolas Flamel Ostanes Paracelsus Rhazes Robert Boyle Roger Bacon Wei Boyang Zosimos of Panopolis

Works

Alchemical Studies Atalanta Fugiens Aurora consurgens Baopuzi Bibliotheca Chemica Curiosa Buch der heiligen Dreifaltigkeit Cantilenae Intelectuales de Phoenice Redivivo Cantong qi Chymical Wedding of Christian Rosenkreutz Cyranides De Alchemia Den vises sten Deutsches Theatrum Chemicum Emerald Tablet Fasciculus Chemicus Greek Magical Papyri Hermetic Definitions Hermetic Journal Hermetica Kitab al-Kimya Leyden papyrus X Liber Ignium Musaeum Hermeticum Mutus Liber Occult Chemistry Papyrus Graecus Holmiensis Parabola Allegory Psychology and Alchemy Rosary of the Philosophers Septimana Philosophica Splendor Solis Suspicions about the Hidden Realities of the Air The Hermetical Triumph The Mirror of Alchimy The Twelve Keys of Basil Valentine Theatrum Chemicum Theatrum Chemicum
Theatrum Chemicum
Britannicum Tripus Aureus Turba Philosophorum Treatise on the Appa

.