Accretion disc
   HOME

TheInfoList



OR:

An accretion disk is a structure (often a
circumstellar disk A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are th ...
) formed by diffuse material in
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
al motion around a massive central body. The central body is typically a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
.
Friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward towards the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
; those around
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s and
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s in the
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
part of the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
. The study of oscillation modes in accretion disks is referred to as diskoseismology.


Manifestations

Accretion disks are a ubiquitous phenomenon in astrophysics; active galactic nuclei, protoplanetary disks, and gamma ray bursts all involve accretion disks. These disks very often give rise to
astrophysical jet An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets beco ...
s coming from the vicinity of the central object. Jets are an efficient way for the star-disk system to shed
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
without losing too much
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
. The most spectacular accretion disks found in nature are those of active galactic nuclei and of quasars, which are thought to be massive black holes at the center of galaxies. As matter enters the accretion disc, it follows a trajectory called a tendex line, which describes an inward spiral. This is because particles rub and bounce against each other in a turbulent flow, causing frictional heating which radiates energy away, reducing the particles' angular momentum, allowing the particle to drift inwards, driving the inward spiral. The loss of angular momentum manifests as a reduction in velocity; at a slower velocity, the particle must adopt a lower orbit. As the particle falls to this lower orbit, a portion of its gravitational potential energy is converted to increased velocity and the particle gains speed. Thus, the particle has lost energy even though it is now travelling faster than before; however, it has lost angular momentum. As a particle orbits closer and closer, its velocity increases, as velocity increases frictional heating increases as more and more of the particle's potential energy (relative to the black hole) is radiated away; the accretion disk of a black hole is hot enough to emit
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s just outside the event horizon. The large
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
of quasars is believed to be a result of gas being accreted by supermassive black holes. Elliptical accretion disks formed at tidal disruption of stars can be typical in galactic nuclei and quasars. The accretion process can convert about 10 percent to over 40 percent of the mass of an object into energy as compared to around 0.7 percent for nuclear fusion processes. In close binary systems the more massive primary component evolves faster and has already become a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
, a neutron star, or a black hole, when the less massive companion reaches the giant state and exceeds its
Roche lobe In astronomy, the Roche lobe is the region around a star in a binary system within which orbiting material is gravitationally bound to that star. It is an approximately teardrop-shaped region bounded by a critical gravitational equipotential, ...
. A gas flow then develops from the companion star to the primary. Angular momentum conservation prevents a straight flow from one star to the other and an accretion disk forms instead. Accretion disks surrounding T Tauri stars or Herbig stars are called protoplanetary disks because they are thought to be the progenitors of
planetary system A planetary system is a set of gravitationally bound non- stellar objects in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consi ...
s. The accreted gas in this case comes from the molecular cloud out of which the star has formed rather than a companion star.


Accretion disk physics

In the 1940s, models were first derived from basic physical principles. In order to agree with observations, those models had to invoke a yet unknown mechanism for angular momentum redistribution. If matter is to fall inwards it must lose not only gravitational energy but also lose
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
. Since the total angular momentum of the disk is conserved, the angular momentum loss of the mass falling into the center has to be compensated by an angular momentum gain of the mass far from the center. In other words, angular momentum should be ''transported'' outwards for matter to accrete. According to the Rayleigh stability criterion, :\frac>0, where \Omega represents the
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an object ...
of a fluid element and R its distance to the rotation center, an accretion disk is expected to be a
laminar flow In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mi ...
. This prevents the existence of a
hydrodynamic In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) ...
mechanism for angular momentum transport. On one hand, it was clear that viscous stresses would eventually cause the matter towards the center to heat up and radiate away some of its gravitational energy. On the other hand,
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
itself was not enough to explain the transport of angular momentum to the exterior parts of the disk.
Turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
-enhanced viscosity was the mechanism thought to be responsible for such angular-momentum redistribution, although the origin of the turbulence itself was not well understood. The conventional \alpha-model (discussed below) introduces an adjustable parameter \alpha describing the effective increase of viscosity due to turbulent
eddies In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid ...
within the disk. In 1991, with the rediscovery of the magnetorotational instability (MRI), S. A. Balbus and J. F. Hawley established that a weakly magnetized disk accreting around a heavy, compact central object would be highly unstable, providing a direct mechanism for angular-momentum redistribution.


α-Disk model

Shakura and
Sunyaev Rashid Alievich Sunyaev ( tt-Cyrl, Рәшит Гали улы Сөнәев, russian: Раши́д Али́евич Сюня́ев; born 1 March 1943 in Tashkent, USSR) is a Germany, German, Soviet Union, Soviet, and Russia, Russian astrophysicist ...
(1973) proposed turbulence in the gas as the source of an increased viscosity. Assuming subsonic turbulence and the disk height as an upper limit for the size of the eddies, the disk viscosity can be estimated as \nu=\alpha c_H where c_ is the sound speed, H is the scale height of the disk, and \alpha is a free parameter between zero (no accretion) and approximately one. In a turbulent medium \nu\approx v_ l_ , where v_ is the velocity of turbulent cells relative to the mean gas motion, and l_ is the size of the largest turbulent cells, which is estimated as l_ \approx H = c_/\Omega and v_ \approx c_ , where \Omega = (G M)^ r^ is the Keplerian orbital angular velocity, r is the radial distance from the central object of mass M. By using the equation of
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
, combined with conservation of
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
and assuming that the disk is thin, the equations of disk structure may be solved in terms of the \alpha parameter. Many of the observables depend only weakly on \alpha, so this theory is predictive even though it has a free parameter. Using Kramers' opacity law it is found that :H=1.7\times 10^8\alpha^\dot^_ m_1^ R^_f^ :T_c=1.4\times 10^4 \alpha^\dot^_ m_1^ R^_f^ :\rho=3.1\times 10^\alpha^\dot^_ m_1^ R^_f^^ where T_c and \rho are the mid-plane temperature and density respectively. \dot_ is the accretion rate, in units of 10^^, m_1 is the mass of the central accreting object in units of a solar mass, M_\bigodot, R_ is the radius of a point in the disk, in units of 10^, and f=\left -\left(\frac\right)^ \right, where R_\star is the radius where angular momentum stops being transported inwards. The Shakura–Sunyaev α-disk model is both thermally and viscously unstable. An alternative model, known as the \beta-disk, which is stable in both senses assumes that the viscosity is proportional to the gas pressure \nu \propto \alpha p_. In the standard Shakura–Sunyaev model, viscosity is assumed to be proportional to the total pressure p_ = p_ + p_ = \rho c_^2 since \nu = \alpha c_ H = \alpha c_s^2/\Omega = \alpha p_/(\rho \Omega) . The Shakura–Sunyaev model assumes that the disk is in local thermal equilibrium, and can radiate its heat efficiently. In this case, the disk radiates away the viscous heat, cools, and becomes geometrically thin. However, this assumption may break down. In the radiatively inefficient case, the disk may "puff up" into a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does n ...
or some other three-dimensional solution like an Advection Dominated Accretion Flow (ADAF). The ADAF solutions usually require that the accretion rate is smaller than a few percent of the
Eddington limit The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The stat ...
. Another extreme is the case of Saturn's rings, where the disk is so gas poor that its angular momentum transport is dominated by solid body collisions and disk-moon gravitational interactions. The model is in agreement with recent astrophysical measurements using gravitational lensing.


Magnetorotational instability

Balbus and Hawley (1991) proposed a mechanism which involves magnetic fields to generate the angular momentum transport. A simple system displaying this mechanism is a gas disk in the presence of a weak axial magnetic field. Two radially neighboring fluid elements will behave as two mass points connected by a massless spring, the spring tension playing the role of the magnetic tension. In a Keplerian disk the inner fluid element would be orbiting more rapidly than the outer, causing the spring to stretch. The inner fluid element is then forced by the spring to slow down, reduce correspondingly its angular momentum causing it to move to a lower orbit. The outer fluid element being pulled forward will speed up, increasing its angular momentum and move to a larger radius orbit. The spring tension will increase as the two fluid elements move further apart and the process runs away. It can be shown that in the presence of such a spring-like tension the Rayleigh stability criterion is replaced by : \frac>0. Most astrophysical disks do not meet this criterion and are therefore prone to this magnetorotational instability. The magnetic fields present in astrophysical objects (required for the instability to occur) are believed to be generated via dynamo action.


Magnetic fields and jets

Accretion disks are usually assumed to be threaded by the external magnetic fields present in the
interstellar medium In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
. These fields are typically weak (about few micro-Gauss), but they can get anchored to the matter in the disk, because of its high
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
, and carried inward toward the central
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
. This process can concentrate the
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ...
around the centre of the disk giving rise to very strong magnetic fields. Formation of powerful astrophysical jets along the rotation axis of accretion disks requires a large scale poloidal magnetic field in the inner regions of the disk. Such magnetic fields may be advected inward from the interstellar medium or generated by a magnetic dynamo within the disk. Magnetic fields strengths at least of order 100 Gauss seem necessary for the magneto-centrifugal mechanism to launch powerful jets. There are problems, however, in carrying external magnetic flux inward towards the central star of the disk. High electric conductivity dictates that the magnetic field is frozen into the matter which is being accreted onto the central object with a slow velocity. However, the plasma is not a perfect electric conductor, so there is always some degree of dissipation. The magnetic field diffuses away faster than the rate at which it is being carried inward by accretion of matter. A simple solution is assuming a
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
much larger than the
magnetic diffusivity The magnetic diffusivity is a parameter in plasma physics which appears in the magnetic Reynolds number. It has SI units of m²/s and is defined as:W. Baumjohann and R. A. Treumann, ''Basic Space Plasma Physics'', Imperial College Press, 1997. :\ ...
in the disk. However, numerical simulations, and theoretical models, show that the viscosity and magnetic diffusivity have almost the same order of magnitude in magneto-rotationally turbulent disks. Some other factors may possibly affect the advection/diffusion rate: reduced turbulent magnetic diffusion on the surface layers; reduction of the Shakura
Sunyaev Rashid Alievich Sunyaev ( tt-Cyrl, Рәшит Гали улы Сөнәев, russian: Раши́д Али́евич Сюня́ев; born 1 March 1943 in Tashkent, USSR) is a Germany, German, Soviet Union, Soviet, and Russia, Russian astrophysicist ...
viscosity by magnetic fields; and the generation of large scale fields by small scale MHD turbulence –a large scale dynamo. In fact, a combination of different mechanisms might be responsible for efficiently carrying the external field inwards towards the central parts of the disk where the jet is launched. Magnetic buoyancy, turbulent pumping and turbulent diamagnetism exemplify such physical phenomena invoked to explain such efficient concentration of external fields.


Analytic models of sub-Eddington accretion disks (thin disks, ADAFs)

When the accretion rate is sub-Eddington and the opacity very high, the standard thin accretion disk is formed. It is geometrically thin in the vertical direction (has a disk-like shape), and is made of a relatively cold gas, with a negligible radiation pressure. The gas goes down on very tight spirals, resembling almost circular, almost free (Keplerian) orbits. Thin disks are relatively luminous and they have thermal electromagnetic spectra, i.e. not much different from that of a sum of black bodies. Radiative cooling is very efficient in thin disks. The classic 1974 work by Shakura and Sunyaev on thin accretion disks is one of the most often quoted papers in modern astrophysics. Thin disks were independently worked out by Lynden-Bell, Pringle and Rees. Pringle contributed in the past thirty years many key results to accretion disk theory, and wrote the classic 1981 review that for many years was the main source of information about accretion disks, and is still very useful today. A fully general relativistic treatment, as needed for the inner part of the disk when the central object is a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
, has been provided by Page and Thorne, and used for producing simulated optical images by Luminet and Marck, in which, although such a system is intrinsically symmetric its image is not, because the relativistic rotation speed needed for centrifugal equilibrium in the very strong gravitational field near the black hole produces a strong Doppler redshift on the receding side (taken here to be on the right) whereas there will be a strong blueshift on the approaching side. Due to light bending, the disk appears distorted but is nowhere hidden by the black hole. When the accretion rate is sub-Eddington and the opacity very low, an ADAF is formed. This type of accretion disk was predicted in 1977 by Ichimaru. Although Ichimaru's paper was largely ignored, some elements of the ADAF model were present in the influential 1982 ion-tori paper by Rees, Phinney, Begelman and Blandford. ADAFs started to be intensely studied by many authors only after their rediscovery in the mid-1990 by Narayan and Yi, and independently by Abramowicz, Chen, Kato, Lasota (who coined the name ADAF), and Regev. Most important contributions to astrophysical applications of ADAFs have been made by Narayan and his collaborators. ADAFs are cooled by advection (heat captured in matter) rather than by radiation. They are very radiatively inefficient, geometrically extended, similar in shape to a sphere (or a "corona") rather than a disk, and very hot (close to the virial temperature). Because of their low efficiency, ADAFs are much less luminous than the Shakura–Sunyaev thin disks. ADAFs emit a power-law, non-thermal radiation, often with a strong Compton component.


Analytic models of super-Eddington accretion disks (slim disks, Polish doughnuts)

The theory of highly super-Eddington black hole accretion, ''M''≫''M''Edd, was developed in the 1980s by Abramowicz, Jaroszynski, Paczyński, Sikora and others in terms of "Polish doughnuts" (the name was coined by Rees). Polish doughnuts are low viscosity, optically thick, radiation pressure supported accretion disks cooled by
advection In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is al ...
. They are radiatively very inefficient. Polish doughnuts resemble in shape a fat torus (a doughnut) with two narrow funnels along the rotation axis. The funnels collimate the radiation into beams with highly super-Eddington luminosities. Slim disks (name coined by Kolakowska) have only moderately super-Eddington accretion rates, ''M''≥''M''Edd, rather disk-like shapes, and almost thermal spectra. They are cooled by advection, and are radiatively ineffective. They were introduced by Abramowicz, Lasota, Czerny and Szuszkiewicz in 1988.


Excretion disk

The opposite of an accretion disk is an excretion disk where instead of material accreting from a disk on to a central object, material is excreted from the center outwards on to the disk. Excretion disks are formed when stars merge.


See also

*
Accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
*
Astrophysical jet An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets beco ...
* Blandford–Znajek process *
Circumstellar disc A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reser ...
* * Dynamo theory * Gravitational singularity * Ring system * Quasi-star *
Solar nebula The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened int ...
*
Spin-flip A black hole spin-flip occurs when the spin axis of a rotating black hole undergoes a sudden change in orientation due to absorption of a second (smaller) black hole. Spin-flips are believed to be a consequence of galaxy mergers, when two supe ...


References

* *


External links


Professor John F. Hawley homepage



Accretion Discs on Scholarpedia
* {{DEFAULTSORT:Accretion Disk - Black holes Unsolved problems in physics Vortices Concepts in astronomy Articles containing video clips