Accidental symmetry
   HOME

TheInfoList



OR:


In field theory

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, particularly in
renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering va ...
theory, an accidental symmetry is a symmetry which is present in a renormalizable theory only because the terms which break it have too high a dimension to appear in the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
. In the standard model, the
lepton number In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number ...
and the
baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
are accidental symmetries, while in lattice models,
rotational invariance In mathematics, a function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument. Mathematics Functions For example, the function :f(x,y) = x ...
is accidental.


In Quantum Mechanics

The connection between symmetry and degeneracy (that is, the fact that apparently unrelated quantities turn out to be equal) is familiar in every day experience. Consider a simple example, where we draw three points on a plane, and calculate the distance between each of the three points. If the points are placed randomly, then in general all of these distances will be different. However, if the points are arranged so that a rotation by 120 degrees leaves the picture invariant, then the distances between them will all be equal (as this situation obviously describes an equilateral triangle). The observed degeneracy boils down to the fact that the system has a D3 symmetry. In quantum mechanics, calculations (at least formally) boil down to the diagonalization of Hermitian matrices - in particular, the Hamiltonian, or in the continuous case, the solution of linear differential equations. Again, observed degeneracies in the eigenspectrum are a consequence of discrete (or continuous) symmetries. In the latter case, Noether's theorem also guarantees a conserved current. "Accidental" symmetry is the name given to observed degeneracies that are apparently not a consequence of symmetry. The term is misleading as often the observed degeneracy is not accidental at all, and is a consequence of a 'hidden' symmetry which is not immediately obvious from the Hamiltonian in a given basis. The non relativistic Hydrogen atoms a good example of this - by construction, its Hamiltonian is invariant under the full rotation group in 3 dimensions, SO(3). A less obvious feature is that the Hamiltonian is also invariant under SO(4), the extension of SO(3) to 4D, of which SO(3) is a subgroup (another way of saying this is that all possible rotations in 3D are also possible in 4D - we just don't rotate about the additional axis). This gives rise to the 'accidental' degeneracy observed in the Hydrogenic eigenspectrum. As a more palatable example, consider the Hermitian matrix:

\begin 0 &-0.5&-\sqrt&0.5\\ -0.5&-\sqrt&0&0\\ -\sqrt&0&0&0\\ 0.5&0&0&\sqrt\\ \end

Although there is already some suggestive relationships between the matrix elements, it is not clear what the symmetry of this matrix is at first glance. However, it is easy to demonstrate that by a unitary transformation, this matrix is equivalent to:

\begin 0&1&0&0\\ 1&0&1&0\\ 0&1&0&1\\ 0&0&1&0\\ \end

Which can be verified directly by numerically (or for purists, analytically - see Chebyshev polynomials for some clues) diagonalising the sub-matrix formed by removing the first row and column. Rotating the basis defining this sub matrix using the resulting unitary brings the original matrix into the originally stated form. This matrix has a P4 permutation symmetry, which in this basis is much easier to see, and could constitute a 'hidden' symmetry. In this case, there are no degeneracies in the eigenspectrum. The technical reason for this is that each eigenstate transforms with respect to a different irreducible representation of P4. If one encountered a case where some group of eigenstates correspond to the same irreducible representation of the 'hidden' symmetry group, a degeneracy would be observed. Although for this simple 4x4 matrix the symmetry could have been guessed (it was after all, always there to begin with), if the matrix was larger, it would have been more difficult to spot.


See also

*
Renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering va ...


External links


Accidental Symmetry in Quantum Physics
Quantum field theory


References

{{quantum-stub