AN/APQ-7
   HOME

TheInfoList



OR:

The AN/APQ-7, or Eagle, was a
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
bombsight A bombsight is a device used by military aircraft to drop bombs accurately. Bombsights, a feature of combat aircraft since World War I, were first found on purpose-designed bomber aircraft and then moved to fighter-bombers and modern tactical ...
system developed by the
US Army Air Force The United States Army Air Forces (USAAF or AAF) was the major land-based aerial warfare service component of the United States Army and ''de facto'' aerial warfare service branch of the United States during and immediately after World War II ...
. Early studies started in late 1941 under the direction of Luis Alvarez at the
MIT Radiation Laboratory The Radiation Laboratory, commonly called the Rad Lab, was a microwave and radar research laboratory located at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. It was first created in October 1940 and operated until 31 ...
, but full-scale development did not begin until April 1943. By this time US-built, higher frequency systems promising better performance over the existing British H2S radar were entering production. Eagle's even higher resolution was considered important to Air Force planners who preferred precision bombing but were failing to deliver it, and high hopes were put on the system's abilities to directly attack small targets like docks and bridges. The war effort was already winding down when the first production units arrived in late 1944. A small number were fitted to
B-17 Flying Fortress The Boeing B-17 Flying Fortress is a four-engined heavy bomber developed in the 1930s for the United States Army Air Corps (USAAC). Relatively fast and high-flying for a bomber of its era, the B-17 was used primarily in the European Theater ...
and
B-24 Liberator The Consolidated B-24 Liberator is an American heavy bomber, designed by Consolidated Aircraft of San Diego, California. It was known within the company as the Model 32, and some initial production aircraft were laid down as export models ...
aircraft intended for use in Europe, but none of these arrived in time to see action before the war ended. The system was first used operationally with the
B-29 Superfortress The Boeing B-29 Superfortress is an American four-engined propeller-driven heavy bomber, designed by Boeing and flown primarily by the United States during World War II and the Korean War. Named in allusion to its predecessor, the B-17 ...
in the Pacific Theater starting in May 1945. The addition of the APA-46 and 47 "Nosmo" synchronized a
Norden bombsight The Norden Mk. XV, known as the Norden M series in U.S. Army service, is a bombsight that was used by the United States Army Air Forces (USAAF) and the United States Navy during World War II, and the United States Air Force in the Korean ...
with the APQ-7, and the entire assembly became known as the APQ-7A. The war ended shortly after this system was introduced, and Eagle saw little real world use. Post-war efforts focused on the
K-system The K-system is an audio level measuring technique proposed by mastering engineer Bob Katz in the paper "An integrated approach to Metering, Monitoring and Levelling". It proposes a studio monitor calibration system and a set of meter ballist ...
, as Eagle's unique antenna design made it difficult to use with higher speed jet powered bombers.


History


Impetus

Late in 1940, as part of the
Tizard Mission The Tizard Mission, officially the British Technical and Scientific Mission, was a British delegation that visited the United States during WWII to obtain the industrial resources to exploit the military potential of the research and development ( ...
, Taffy Bowen had introduced US scientists to the British work on microwave radar using the
cavity magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and currently in microwave ovens and linear particle accelerators. It generates microwaves using the interaction of a stream of electrons with a magnetic field whi ...
. After returning to the UK, Bowen's earlier observation about differences in ground returns noticed in early experiments led
Philip Dee Philip Ivor Dee CBE FRS FRSE (8 April 1904, Stroud – 17 April 1983, Glasgow) was a British nuclear physicist. He was responsible for the development of airborne radar during the Second World War. Glasgow University named the Philip Ivor Dee Me ...
to develop a prototype ground mapping system in March 1941, a development that would evolve into the
H2S radar H2S was the first airborne, ground scanning radar system. It was developed for the Royal Air Force's Bomber Command during World War II to identify targets on the ground for night and all-weather bombing. This allowed attacks outside the ran ...
. The US was kept apprised of this research. While discussing it in the fall of 1941, Bowen and Alvarez entered a heated debate about the proper antenna design for ground mapping systems. Bowen was convinced that the antenna had to be highly accurate in both azimuth and elevation, in order to provide reasonable resolution. Improving resolution over that of H2S would either require larger antennae that would be unwieldy, or decreasing the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of the transmitter beyond the state of the art. Alvarez was not convinced of one part of the argument – the need for the system to be accurate in elevation. He considered it to be an advantage if the system scanned a wide angle vertically, receiving a signal from a long "strip" of the ground all at once. Since the radar returns from ground closer to the aircraft would be received first, a display being drawn outward from the center, the classic
Plan Position Indicator A plan position indicator (PPI) is a type of radar display that represents the radar antenna in the center of the display, with the distance from it and height above ground drawn as concentric circles. As the radar antenna rotates, a radial tra ...
, would naturally decode the signal back into a 2D display. The antenna for such a system would have to be large only in the horizontal direction, and could be very thin vertically. This had advantages for installation on aircraft, but it would be even more practical if the beam could be steered electronically, as opposed to mechanically. By delaying the signal slightly as it travelled down the long antenna, which could be arranged through a number of means, the phase angle would vary, causing the resulting signal to be focussed in a given direction. Since the antenna didn't have to move in order to scan, this led to the possibility of embedding the antenna in the leading edges of the aircraft wings, or similar solutions. However, such a system would then be subject to changes in the aircraft's attitude, something that H2S addressed by mounting the antenna on a stabilizing platform. Alvarez drew up several concepts for electronic systems to correct for any movement of the aircraft during the scanning. The Rad Lab team initially referred to the concept as the EHIB, short for "Every House in Berlin", which they expected to be able to see. At Lee DuBridge's insistence, in early 1942 it was renamed "Eagle".


Antenna designs

By January 1942, a team working on the antenna problem had developed an initial concept consisting of a long rectangular
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
with small slots cut into the front side. The concept was an early example of what is today referred to as a
slot antenna A slot antenna consists of a metal surface, usually a flat plate, with one or more holes or slots cut out. When the plate is driven as an antenna by an applied radio frequency current, the slot radiates electromagnetic waves in a way similar to a ...
. Radio signals escaping through a slot would interfere with the signal from other slots, strongly suppressing the signal in certain directions while adding up in others. The result was a tightly focused beam. However, given the frequencies available, in the X band, any antenna wide enough to produce useful resolution proved to also be wide enough to generate very strong
side lobe In antenna engineering, sidelobes are the lobes (local maxima) of the far field radiation pattern of an antenna or other radiation source, that are not the ''main lobe''. The radiation pattern of most antennas shows a pattern of "''lobes'' ...
s. These ruined the display, not only leaking away signal uselessly, but also causing returns from the sides of the antenna that could not be distinguished from ones in front of it. Many attempts were made to reduce the side lobes. One notable success was made in April 1942, with a new design with a polystyrene
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
material partially filling the leading edge of the waveguide. The presence of the dielectric slowed the passage of the signal, effectively compressing it, so that the distance between the slots could be reduced and the antenna as a whole was smaller. This allowed there to be more slots in the same size antenna, which helped reduce the side lobes. All of these slotted designs proved to have poor gain. While working on another project, a microwave-frequency
early warning radar An early-warning radar is any radar system used primarily for the long-range detection of its targets, i.e., allowing defences to be alerted as ''early'' as possible before the intruder reaches its target, giving the air defences the maximum t ...
, in May 1942 Alvarez conceived using individual dipole antennas instead of slots as the radiating elements. By connecting them to the feed with alternating polarity (180 degrees out of phase), they could be placed side-by-side, instead of being of a wavelength apart. This doubled the number of elements in a given area, likewise doubling the signal strength while also further reducing the side lobes. What remained was the development of a suitable system for delaying the signal on demand, allowing the direction of the beam to be scanned. The key problem was to change the speed of the signal on demand so the phase could be adjusted. After several concepts, the team finally settled on a waveguide consisting of two parallel plates with overlapping barriers on the vertical sides (the front and back of the wave-guide). By mechanically varying the spacing between the two plates, the speed of propagation along the waveguide changed, and steering was achieved.


Development

By the summer of 1942 it appeared most of the major problems had been solved, and a new lab under the direction of E.A. Luebke was set up to develop a working system. The Army Air Force, a proponent of precision bombing but unable to achieve it in combat, placed high hopes on the system's ability to attack pinpoint targets, pressing for its development in spite of other systems like
H2X H2X, officially known as the AN/APS-15, was an American ground scanning radar system used for blind bombing during World War II. It was a development of the British H2S radar, the first ground mapping radar to be used in combat. It was also kno ...
beginning to enter production. The first experimental model, with a antenna, was placed on the roof of the
Radiation Lab The Radiation Laboratory, commonly called the Rad Lab, was a microwave and radar research laboratory located at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. It was first created in October 1940 and operated until 31 ...
. Although crude, it demonstrated that the basic idea was sound. A version followed late in 1942, and then an one with 108 dipoles in early 1943. It was pointed out that the dihedral and sweepback of most aircraft would make installation of an in-wing scanner difficult, and aeroelastic loads during flight, especially "flapping", would be a serious concern. The team moved to a long model with 252 dipoles, mounted in a separate streamlined wing-like enclosure. The width was limited to 16 feet simply because that was the largest wood planer the team could access. Two dipoles were later removed at the request of an industrial partner who preferred to work with round numbers. The new system was mounted to a B-24 bomber and flew for its first tests on 16 June 1943. A series of tests at
Westover Field Westover may refer to: People * Al Westover (born 1954), American professional basketball player in Australia * Arthur Westover (1864–1935), Canadian sport shooter and 1908 Olympian * Charles Westover (1934–1990), better known as Del Shannon, ...
demonstrated that the antenna worked well, but none of the other electronics were reliable. Testing continued until October, when the bomber, S.N 42-40344, was flown to Boca Raton to continue testing in better weather.


Manufacturing

While the basic system was being tested, consideration was being given to the displays and ballistics computer. This led to a "gold plated" design known as the Universal Bomb Sight, or UBS. Developed by
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial Research and development, research and scientific developm ...
, the UBS was an enormous
mechanical computer A mechanical computer is a computer built from mechanical components such as levers and gears rather than electronic components. The most common examples are adding machines and mechanical counters, which use the turning of gears to increment out ...
, about , that could be provided with any sort of inputs and conditions, and provide a bombing cue. Unlike similar models like the
Norden bombsight The Norden Mk. XV, known as the Norden M series in U.S. Army service, is a bombsight that was used by the United States Army Air Forces (USAAF) and the United States Navy during World War II, and the United States Air Force in the Korean ...
, the UBS was designed to have little settling time, and would allow maneuvering throughout the approach. The proposed set-up would include two displays, a wide angle view used for navigation, and another highly magnified view for precision bombing. By the late summer of 1943 it was clear the UBS was too great a challenge and could delay the entire program. At a 22 October meeting the decision was made to use a simplified bomb aiming system for the immediate future, with a radar operator calling information to the bombardier, who would use a simple mechanical calculator to time the drop. It was clear this was unsatisfactory, but with no other option available in the short term, an order for 40 preproduction Eagle Mark I systems was placed for delivery in August 1944. Many new problems appeared as each part was prepared for production, and by 1 May 1944 Western Electric was satisfied that the design was ready for manufacture. The company used a dilapidated building on 42nd Street in
New York City New York, often called New York City or NYC, is the most populous city in the United States. With a 2020 population of 8,804,190 distributed over , New York City is also the most densely populated major city in the Un ...
as the assembly site, and began ordering the 1813 separate parts from manufacturers nationwide. The first five sets were assembled at Bell Labs in July 1944, and another 33 were completed by August and the last of the 50 preproduction sets in September. The first production sets from the new plant arrived on 28 September, with 40 more in October, and another 142 in November.


Nosmo

While production was starting, the problem of bombing with two crew members was proving even worse than initially thought. Meanwhile, other radar systems, like H2X, were demonstrating the problem of trying to calculate the bomb trajectory while operating the radar. The solution was to build a system that linked the radar's output to the Norden's input. The first such device, the AN/APA-46 Adapter Assembly, allowed the operator to sight through the Norden at four (or five depending on the model) locations during the approach. This was quickly replaced by the APA-47, which updated the Norden continuously. This allowed the bombardier to concentrate on the radar display during the approach, and, if the conditions were favourable, move to the Norden at the last minute to achieve higher accuracy.


Service use

Sets were rushed to B-24 and B-17 units for use with the Eighth Air Force in Europe, but arrived too late for action. Instead, the sets were directed to the new B-29 for use against Japan. Only one unit, the 315th Bombardment Wing of the 21st Bomber Command was fully equipped with Eagle, flying for one month before the war ended. When Nosmo was fitted to the Eagle, the entire assembly became known as the AN/APQ-7A. These had just arrived when the war ended, and did not see combat use.


References


Citations


Bibliography

* * {{DEFAULTSORT:AN APQ-7 Radars of the United States Air Force Military radars of the United States