AMD Horus
   HOME

TheInfoList



OR:

The Horus system, designed by Newisys for
AMD Advanced Micro Devices, Inc. (AMD) is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets. While it initially manufactur ...
, was created to enable AMD
Opteron Opteron is AMD's x86 former server and workstation processor line, and was the first processor which supported the AMD64 instruction set architecture (known generically as x86-64 or AMD64). It was released on April 22, 2003, with the ''Sledg ...
machines to extend beyond the current limit of 8-way ( CPU sockets) architectures. The Opteron CPUs feature a cache-coherent
HyperTransport HyperTransport (HT), formerly known as Lightning Data Transport, is a technology for interconnection of computer processors. It is a bidirectional serial/ parallel high-bandwidth, low- latency point-to-point link that was introduced on Apri ...
(ccHT) bus to permit glueless, multiprocessor interconnect between physical CPU packages but as there is a maximum of three ccHT interfaces per chip, the systems are limited to a maximum of 8 sockets. The HyperTransport bus is also distance restricted and does not permit off-system interconnect. The Horus system overcomes these limitations by creating a pseudo-Opteron, the Horus chip, which connects to four real Opterons via the HyperTransport bus. As far as the Opterons are concerned they are in a five-way system and this is the basic Horus node (as called 'quad'). The Horus chip then provides an additional off-board interface (based on the
InfiniBand InfiniBand (IB) is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency. It is used for data interconnect both among and within computers. InfiniBand is also use ...
standards) which can link to additional Horus nodes (up to 8). The chip handles the necessary translation between local and off-board ccHT communications. By building the CPUs around the Horus chip with 12-bit lanes running at 3125 MHz with InfiniBand technology ( 8b/10b encoding), this system has an effective internal speed of 30 Gbit/s. With 8 'quads' connected together, each with the maximum of four Opteron sockets per node, the Horus system allows a total of 32 CPU sockets in a single machine. Dual and future quad-core chips will also be supported, allowing a single system to scale to over a hundred processing cores.


See also

*
Heterogeneous System Architecture Heterogeneous System Architecture (HSA) is a cross-vendor set of specifications that allow for the integration of central processing units and graphics processors on the same bus, with shared memory and tasks. The HSA is being developed by the HSA ...


External links


Horus white paper.

Google groups discussion by engineer.
{{DEFAULTSORT:Horus AMD technologies Computer buses