6-simplex honeycomb
   HOME

TheInfoList



OR:

In six-dimensional
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, the 6-simplex honeycomb is a space-filling
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety o ...
(or
honeycomb A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen. Beekeepers may remove the entire honeycomb to harvest honey. Honey bees consume about of honey ...
). The tessellation fills space by
6-simplex In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alte ...
,
rectified 6-simplex In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rect ...
, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.


A6 lattice

This
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
is called the A6 lattice or 6-simplex lattice. The 42 vertices of the expanded 6-simplex vertex figure represent the 42 roots of the _6
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...
. It is the 6-dimensional case of a
simplectic honeycomb In geometry, the simplectic honeycomb (or -simplex honeycomb) is a dimensional infinite series of honeycombs, based on the _n affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of nodes with one nod ...
. Around each vertex figure are 126 facets: 7+7
6-simplex In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°. Alte ...
, 21+21
rectified 6-simplex In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex. There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the ''rect ...
, 35+35 birectified 6-simplex, with the count distribution from the 8th row of
Pascal's triangle In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although o ...
. The A lattice (also called A) is the union of seven A6 lattices, and has the
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
of the dual to the
omnitruncated 6-simplex honeycomb In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets. The facets of all omnitruncated simplectic honeycombs are c ...
, and therefore the
Voronoi cell In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed t ...
of this lattice is the omnitruncated 6-simplex. : ∪ ∪ ∪ ∪ ∪ ∪ = dual of


Related polytopes and honeycombs


Projection by folding

The ''6-simplex honeycomb'' can be projected into the 3-dimensional
cubic honeycomb The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a r ...
by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
:


See also

Regular and uniform honeycombs in 6-space: *
6-cubic honeycomb The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. Constructions There are m ...
*
6-demicubic honeycomb The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb (geometry), honeycomb) in Euclidean 6-space. It is constructed as an Alternation (geometry), alternation of the regular 6-cube honeycomb. I ...
*
Truncated 6-simplex honeycomb In Sixth dimension, six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb (geometry), honeycomb). The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncated 6-simpl ...
*
Omnitruncated 6-simplex honeycomb In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets. The facets of all omnitruncated simplectic honeycombs are c ...
* 222 honeycomb


Notes


References

* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) * Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380–407, MR 2,10(1.9 Uniform space-fillings) ** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45{{Honeycombs Honeycombs (geometry) 7-polytopes