6-orthoplex
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a 6-orthoplex, or 6-
cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahe ...
, is a regular
6-polytope In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets. Definition A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. A ...
with 12 vertices, 60
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
s, 160 triangle
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
, 240 tetrahedron
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
, 192
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
''4-faces'', and 64 ''5-faces''. It has two constructed forms, the first being regular with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or
Coxeter symbol Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
311. It is a part of an infinite family of polytopes, called
cross-polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
s or ''orthoplexes''. The
dual polytope In geometry, every polyhedron is associated with a second dual structure, where the Vertex (geometry), vertices of one correspond to the Face (geometry), faces of the other, and the edges between pairs of vertices of one correspond to the edges b ...
is the 6-
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
, or hexeract.


Alternate names

*Hexacross, derived from combining the family name
cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahe ...
with ''hex'' for six (dimensions) in
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
. * Hexacontitetrapeton as a 64- facetted
6-polytope In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets. Definition A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. A ...
.


As a configuration

This configuration matrix represents the 6-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. \begin\begin12 & 10 & 40 & 80 & 80 & 32 \\ 2 & 60 & 8 & 24 & 32 & 16 \\ 3 & 3 & 160 & 6 & 12 & 8 \\ 4 & 6 & 4 & 240 & 4 & 4 \\ 5 & 10 & 10 & 5 & 192 & 2 \\ 6 & 15 & 20 & 15 & 6 & 64 \end\end


Construction

There are three
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...
s associated with the 6-orthoplex, one regular, dual of the hexeract with the C6 or ,3,3,3,3
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...
, and a half symmetry with two copies of 5-simplex facets, alternating, with the D6 or 3,1,1Coxeter group. A lowest symmetry construction is based on a dual of a 6-
orthotope In geometry, an orthotopeCoxeter, 1973 (also called a hyperrectangle or a box) is the generalization of a rectangle to higher dimensions. A necessary and sufficient condition is that it is Congruence (geometry), congruent to the Cartesian product ...
, called a 6-fusil.


Cartesian coordinates

Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
for the vertices of a 6-orthoplex, centered at the origin are : (±1,0,0,0,0,0), (0,±1,0,0,0,0), (0,0,±1,0,0,0), (0,0,0,±1,0,0), (0,0,0,0,±1,0), (0,0,0,0,0,±1) Every
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
pair is connected by an
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
, except opposites.


Images


Related polytopes

The 6-orthoplex can be projected down to 3-dimensions into the vertices of a
regular icosahedron In geometry, a regular icosahedron ( or ) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It ...
.'' Quasicrystals and Geometry'', Marjorie Senechal, 1996, Cambridge University Press, p64. 2.7.1 ''The I6 crystal'' It is in a dimensional series of uniform polytopes and honeycombs, expressed by
Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to ...
as 3k1 series. (A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral
hosohedron In spherical geometry, an -gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular -gonal hosohedron has Schläfli symbol with each spherical lune hav ...
.) This polytope is one of 63
uniform 6-polytope In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, bu ...
s generated from the B6
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
, including the regular
6-cube In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
or 6-orthoplex.


References

* H.S.M. Coxeter: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. 1966 * ;Specific


External links

*
Polytopes of Various Dimensions


{{Polytopes 6-polytopes