2 21 polytope
   HOME

TheInfoList



OR:

In 6-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, the 221 polytope is a
uniform 6-polytope In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, bu ...
, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the
cubic surface In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather th ...
, which are naturally in correspondence with the vertices of 221. The rectified 221 is constructed by points at the mid-edges of the 221. The birectified 221 is constructed by points at the triangle face centers of the 221, and is the same as the rectified 122. These polytopes are a part of family of 39 convex uniform polytopes in 6-dimensions, made of uniform 5-polytope facets and
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s, defined by all permutations of rings in this Coxeter-Dynkin diagram: .


2_21 polytope

The 221 has 27 vertices, and 99 facets: 27
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with ...
es and 72 5-simplices. Its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is a
5-demicube In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5- ...
. For visualization this 6-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 27 vertices within a 12-gonal regular polygon (called a
Petrie polygon In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a ...
). Its 216 edges are drawn between 2 rings of 12 vertices, and 3 vertices projected into the center. Higher elements (faces, cells, etc.) can also be extracted and drawn on this projection. The Schläfli graph is the 1-skeleton of this polytope.


Alternate names

* E. L. Elte named it V27 (for its 27 vertices) in his 1912 listing of semiregular polytopes. * Icosihepta-heptacontidi-peton - 27-72 facetted polypeton (acronym jak) (Jonathan Bowers)


Coordinates

The 27 vertices can be expressed in 8-space as an edge-figure of the 421 polytope: (-2, 0, 0, 0,-2, 0, 0, 0), ( 0,-2, 0, 0,-2, 0, 0, 0), ( 0, 0,-2, 0,-2, 0, 0, 0), ( 0, 0, 0,-2,-2, 0, 0, 0), ( 0, 0, 0, 0,-2, 0, 0,-2), ( 0, 0, 0, 0, 0,-2,-2, 0) ( 2, 0, 0, 0,-2, 0, 0, 0), ( 0, 2, 0, 0,-2, 0, 0, 0), ( 0, 0, 2, 0,-2, 0, 0, 0), ( 0, 0, 0, 2,-2, 0, 0, 0), ( 0, 0, 0, 0,-2, 0, 0, 2) (-1,-1,-1,-1,-1,-1,-1,-1), (-1,-1,-1, 1,-1,-1,-1, 1), (-1,-1, 1,-1,-1,-1,-1, 1), (-1,-1, 1, 1,-1,-1,-1,-1), (-1, 1,-1,-1,-1,-1,-1, 1), (-1, 1,-1, 1,-1,-1,-1,-1), (-1, 1, 1,-1,-1,-1,-1,-1), ( 1,-1,-1,-1,-1,-1,-1, 1), ( 1,-1, 1,-1,-1,-1,-1,-1), ( 1,-1,-1, 1,-1,-1,-1,-1), ( 1, 1,-1,-1,-1,-1,-1,-1), (-1, 1, 1, 1,-1,-1,-1, 1), ( 1,-1, 1, 1,-1,-1,-1, 1), ( 1, 1,-1, 1,-1,-1,-1, 1), ( 1, 1, 1,-1,-1,-1,-1, 1), ( 1, 1, 1, 1,-1,-1,-1,-1)


Construction

Its construction is based on the E6 group. The facet information can be extracted from its Coxeter-Dynkin diagram, . Removing the node on the short branch leaves the
5-simplex In five-dimensional geometry, a 5- simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5 ...
, . Removing the node on the end of the 2-length branch leaves the
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with ...
in its alternated form: (211), . Every simplex facet touches a 5-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex. The
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is determined by removing the ringed node and ringing the neighboring node. This makes
5-demicube In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5- ...
(121 polytope), . The edge-figure is the vertex figure of the vertex figure, a
rectified 5-cell In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In t ...
, (021 polytope), . Seen in a configuration matrix, the element counts can be derived from the
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...
orders.


Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow. The number of vertices by color are given in parentheses.


Geometric folding

The 221 is related to the
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
by a geometric
folding Fold, folding or foldable may refer to: Arts, entertainment, and media * ''Fold'' (album), the debut release by Australian rock band Epicure * Fold (poker), in the game of poker, to discard one's hand and forfeit interest in the current pot *Abov ...
of the E6/F4 Coxeter-Dynkin diagrams. This can be seen in the
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there ar ...
projections. The 24 vertices of the 24-cell are projected in the same two rings as seen in the 221. This polytope can tessellate Euclidean 6-space, forming the 222 honeycomb with this Coxeter-Dynkin diagram: .


Related complex polyhedra

The
regular complex polygon In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real ...
333, , in \mathbb^2 has a real representation as the ''221'' polytope, , in 4-dimensional space. It is called a Hessian polyhedron after Edmund Hess. It has 27 vertices, 72 3-edges, and 27 33 faces. Its
complex reflection group In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise. Complex reflection groups arise ...
is 3 sub>3 sub>3, order 648.


Related polytopes

The 221 is fourth in a dimensional series of
semiregular polytope In geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as ''The Semiregular Polyt ...
s. Each progressive uniform polytope is constructed
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
of the previous polytope. Thorold Gosset identified this series in 1900 as containing all
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
facets, containing all simplexes and
orthoplex In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
es. The 221 polytope is fourth in dimensional series 2k2. The 221 polytope is second in dimensional series 22k.


Rectified 2_21 polytope

The rectified 221 has 216 vertices, and 126 facets: 72 rectified 5-simplices, and 27
rectified 5-orthoplex In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex. There are 5 degrees of rectifications for any 5-polytope, the zeroth here being the 5-orthoplex itself, and ...
es and 27
5-demicube In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5- ...
s . Its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is a
rectified 5-cell In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In t ...
prism.


Alternate names

* Rectified icosihepta-heptacontidi-peton as a rectified 27-72 facetted polypeton (acronym rojak) (Jonathan Bowers)Klitzing, (o3x3o3o3o *c3o - rojak)


Construction

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: . Removing the ring on the short branch leaves the
rectified 5-simplex In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the '' ...
, . Removing the ring on the end of the other 2-length branch leaves the
rectified 5-orthoplex In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex. There are 5 degrees of rectifications for any 5-polytope, the zeroth here being the 5-orthoplex itself, and ...
in its alternated form: t1(211), . Removing the ring on the end of the same 2-length branch leaves the
5-demicube In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5- ...
: (121), . The
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is determined by removing the ringed ring and ringing the neighboring ring. This makes
rectified 5-cell In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In t ...
prism, t1x, .


Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.


Truncated 2_21 polytope

The truncated 221 has 432 vertices, 5040 edges, 4320 faces, 1350 cells, and 126 4-faces. Its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is a
rectified 5-cell In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In t ...
pyramid.


Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow, green, cyan, blue, purple.


See also

* List of E6 polytopes


Notes


References

* T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900 * * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 17) Harold Scott MacDonald Coxeter, Coxeter, ''The Evolution of Coxeter-Dynkin diagrams'', ieuw Archief voor Wiskunde 9 (1991) 233-248See figure 1: (p. 232) (Node-edge graph of polytope) * x3o3o3o3o *c3o - jak, o3x3o3o3o *c3o - rojak {{Polytopes 6-polytopes