5 (five) is a

^{2}, while 257 is the 55th prime number. Combinations from these 5 Fermat primes generate 31 polygons with an odd number of sides that can be construncted purely with a compass and straight-edge, which includes the five-sided ^{23058...93951} − 1 too large to compute with current computers. In a related sequence, the first 5 terms in the sequence of Catalan–Mersenne numbers $M\_$ are the only known prime terms, with a sixth possible candidate in the order of 10^{1037.7094}. These prime sequences are conjectured to be prime up to a certain limit.
Every odd number greater than $1$ is the sum of at most five prime numbers, and every odd number greater than $5$ is conjectured to be expressible as the sum of three prime numbers. Helfgtott has provided a proof of the latter, also known as the odd Goldbach conjecture, that is already widely acknowledged by mathematicians as it still undergoes ^{−1}($2^$ − $1$) with a $p$ of $5$, by the Euclid–Euler theorem.
There are a total of five known unitary perfect numbers, which are numbers that are the sums of their positive proper unitary divisors. A sixth unitary number, if discovered, would have at least nine odd prime factors.
Five is ^{2} is 25, which features in the proportions of the two smallest (3, 4, 5) and (5, 12, 13) ''primitive''

_{5}, the _{5}, or the complete bipartite _{3,3}. A similar graph is the Petersen graph, which is strongly connected and also nonplanar. It is most easily described as graph of a pentagram ''embedded'' inside a pentagon, with a total of 5 crossings, a girth of 5, and a Thue number of 5. The Petersen graph, which is also a distance-regular graph, is one of only 5 known

"Cubic Symmetric Graphs (The Foster Census)."

The_{5}. It is one of six regular 4-polytopes, made of thirty-one elements: five vertices, ten edges, ten faces, five tetrahedral cells and one ^{4}·3^{2}·5 = 2·3·4·5·6 = 8·9·10 = 720. On the other hand, whereas $\backslash mathrm\_$ is sharply 4-transitive, $\backslash mathrm\_$ is sharply 5-transitive and $\backslash mathrm\_$ is 5-transitive, and as such they are the only two 5-transitive groups that are not ^{7}· 3^{2}·5· 7· 11, and is the smallest of five sporadic groups with five distinct prime factors in their order. All Mathieu groups are subgroups of $\backslash mathrm\_$, which under the Witt design $\backslash mathrm\_$ of Steiner system S(5, 8, 24) emerges a construction of the extended binary Golay code $\backslash mathrm\_$ that has $\backslash mathrm\_$ as its _{24}, which is the subject of the second generation of seven sporadic groups that are subquotients of the automorphism of the Leech lattice, Conway group $\backslash mathrm\_$.
There are five non-supersingular primes: 37, 43, 53, 61, and 67, all smaller than the largest of fifteen supersingular prime divisors of the friendly giant, 71.

^{3} onward, if the exponent is odd, then the hundreds digit is 1, and if it is even, the hundreds digit is 6.
A number $n$ raised to the fifth power always ends in the same digit as $n$.

NGC 5, a magnitude 13

The Number 5

The Positive Integer 5

{{DEFAULTSORT:5 (Number) Integers 5 (number)

number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...

, numeral and digit
Digit may refer to:
Mathematics and science
* Numerical digit, as used in mathematics or computer science
** Hindu-Arabic numerals, the most common modern representation of numerical digits
* Digit (anatomy), the most distal part of a limb, such ...

. It is the natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...

, and cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...

, following 4 and preceding 6, and is a prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...

. It has attained significance throughout history in part because typical humans have five digit
Digit may refer to:
Mathematics and science
* Numerical digit, as used in mathematics or computer science
** Hindu-Arabic numerals, the most common modern representation of numerical digits
* Digit (anatomy), the most distal part of a limb, such ...

s on each hand.
In mathematics

$5$ is the third smallestprime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...

, and the second super-prime
Super-prime numbers, also known as higher-order primes or prime-indexed primes (PIPs), are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers.
The subsequence begins
:3, 5, 11, 17, 31, ...

. It is the first safe prime, the first good prime, the first balanced prime In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, given a prime number p_n, where is i ...

, and the first of three known Wilson primes. Five is the second Fermat prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
:F_ = 2^ + 1,
where ''n'' is a non-negative integer. The first few Fermat numbers are:
: 3, 5, 17, 257, 65537, 429496729 ...

and the third Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 1 ...

exponent, as well as the third Catalan number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles C ...

, and the third Sophie Germain prime
In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 + ...

. Notably, 5 is equal to the sum of the ''only'' consecutive primes, 2 + 3, and is the only number that is part of more than one pair of twin prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin p ...

s, ( 3, 5) and (5, 7). It is also a sexy prime
In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and .
The term "sexy prime" is a pun stemming from the Latin word for six: .
If o ...

with the fifth prime number and first prime repunit, 11. Five is the third factorial prime
A factorial prime is a prime number that is one less or one more than a factorial (all factorials greater than 1 are even).
The first 10 factorial primes (for ''n'' = 1, 2, 3, 4, 6, 7, 11, 12, 14) are :
: 2 (0! +& ...

, an alternating factorial, and an Eisenstein prime with no imaginary part and real part of the form $3p$ − $1$. In particular, five is the first congruent number, since it is the length of the hypotenuse
In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse eq ...

of the smallest integer-sided right triangle.
Five is the second Fermat prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
:F_ = 2^ + 1,
where ''n'' is a non-negative integer. The first few Fermat numbers are:
: 3, 5, 17, 257, 65537, 429496729 ...

of the form $2^$+ $1$, and more generally the second Sierpiński number of the first kind, $n^n$+ $1$. There are a total of five known Fermat primes, which also include 3, 17, 257, and 65537. The sum of the first 3 Fermat primes, 3, 5 and 17, yields 25 or 5regular pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be sim ...

. Apropos, 31 is also equal to the sum of the maximum number of area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open ...

s inside a circle that are formed from the sides and diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ ...

s of the first five $n$-sided polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...

s, and equal to the maximum number of areas formed by a six-sided polygon; per Moser's circle problem.
The number 5 is the fifth Fibonacci number
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from ...

, being 2 plus 3. It is the only Fibonacci number that is equal to its position aside from 1, which is both the first and second Fibonacci numbers. Five is also a Pell number
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins , , , , and ...

and a Markov number, appearing in solutions to the Markov Diophantine equation: (1, 2, 5), (1, 5, 13), (2, 5, 29), (5, 13, 194
Year 194 ( CXCIV) was a common year starting on Tuesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Septimius and Septimius (or, less frequently, year 947 '' Ab urbe c ...

), (5, 29, 433), ... ( lists Markov numbers that appear in solutions where one of the other two terms is 5). Whereas 5 is unique in the Fibonacci sequence, in the Perrin sequence 5 is both the fifth and sixth Perrin numbers.
5 is the third Mersenne prime exponent of the form $2^n$ − $1$, which yields $31$: the prime index of the third Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 1 ...

and second double Mersenne prime
In mathematics, a double Mersenne number is a Mersenne number of the form
:M_ = 2^-1
where ''p'' is prime.
Examples
The first four terms of the sequence of double Mersenne numbers areChris Caldwell''Mersenne Primes: History, Theorems and Lis ...

127, as well as the third double Mersenne prime exponent for the number 2,147,483,647
The number 2,147,483,647 is the eighth Mersenne prime, equal to 231 − 1. It is one of only four known double Mersenne primes.
The primality of this number was proven by Leonhard Euler, who reported the proof in a letter to Daniel ...

, which is the largest value that a signed 32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32- bit units. Compared to smaller bit widths, 32-bit computers can perform large calcula ...

integer field can hold. There are only four known double Mersenne prime numbers, with a fifth candidate double Mersenne prime $M\_$ = 2peer-review
Peer review is the evaluation of work by one or more people with similar competencies as the producers of the work ( peers). It functions as a form of self-regulation by qualified members of a profession within the relevant field. Peer revie ...

.
The sums of the first five non-primes greater than zero $1$ + $4$ + $6$ + $8$ + $9$ and the first five prime numbers $2$ + $3$ + $5$ + $7$ + $11$ both equal $28$; the 7th triangular number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...

and like $6$ a perfect number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number.
Th ...

, which also includes $496$, the 31st triangular number and perfect number of the form $2^$conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...

d to be the only odd untouchable number, and if this is the case then five will be the only odd prime number that is not the base of an aliquot tree.
In figurate number
The term figurate number is used by different writers for members of different sets of numbers, generalizing from triangular numbers to different shapes (polygonal numbers) and different dimensions (polyhedral numbers). The term can mean
* polygon ...

s, 5 is a pentagonal number, with the sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...

of pentagonal numbers starting: 1, 5, 12, 22, 35, ...
* 5 is a centered tetrahedral number
A centered tetrahedral number is a centered figurate number that represents a tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces ...

: 1, 5, 15, 35, 69, ... Every centered tetrahedral number with an index of 2, 3 or 4 modulo 5 is divisible by 5.
* 5 is a square pyramidal number
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a bro ...

: 1, 5, 14, 30, 55, ... The sum of the first four members is 50 while the fifth indexed member in the sequence is 55.
* 5 is a centered square number
In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each cen ...

: 1, 5, 13, 25, 41, ... The fifth square number
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as .
The usua ...

or 5Pythagorean triple
A Pythagorean triple consists of three positive integers , , and , such that . Such a triple is commonly written , and a well-known example is . If is a Pythagorean triple, then so is for any positive integer . A primitive Pythagorean triple is ...

s.
The factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times (n-1) \times (n-2) \ ...

of five, or $5$ ! = $120$, is the sum of the first fifteen non-zero positive integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...

s, and 15th triangular number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...

, which in turn is the sum of the first five non-zero positive integers and 5th triangular number. 35, which is the fourth or fifth pentagonal and tetrahedral number
A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The th tetrahedral number, , is the sum of the first triangular numbers, that is,
...

, is equal to the sum of the first five triangular numbers: 1, 3, 6, 10, 15.
5 is the value of the central cell of the only non-trivial normal magic square, also called the ''Lo Shu'' square. Its $3$ x $3$ array of squares has a magic constant
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order ''n'' – that is ...

$M$ of $15$, where the sums of its rows, columns, and diagonals are all equal to fifteen. 5 is also the value of the central cell the only non-trivial order-3 normal magic hexagon that is made of nineteen cells.
Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An examp ...

equations of degree and below can be solved with radicals, while quintic equations of degree 5, and higher, cannot generally be so solved. This is the Abel–Ruffini theorem. This is related to the fact that the symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...

$\backslash mathrm\_$ is a solvable group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...

for ''n'' ⩽ 4 and not solvable for ''n'' ⩾ 5.
Euler's identity, $e^$+ $1$ = $0$, contains five essential number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...

s used widely in mathematics: Archimedes' constant $\backslash pi$, Euler's number $e$, the imaginary number
An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...

$i$, unity $1$, and zero
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...

$0$, which makes this formula a renown example of beauty in mathematics.
In geometry

Apentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aroun ...

, or five-pointed polygram
PolyGram N.V. was a multinational entertainment company and major music record label formerly based in the Netherlands. It was founded in 1962 as the Grammophon-Philips Group by Dutch corporation Philips and German corporation Siemens, to be ...

, is the first proper star polygon
In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations ...

constructed from the diagonals of a regular pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be sim ...

as self-intersecting edges that are proportioned in golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0,
where the Greek letter phi ( ...

, $\backslash varphi$. Its internal geometry appears prominently in Penrose tilings, and is a facet
Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cut ...

inside Kepler-Poinsot star polyhedra and Schläfli–Hess star polychora, represented by its Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...

. A similar figure to the pentagram is a five-pointed simple isotoxal
In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two ...

star ☆ without self-intersecting edges. Generally, star polytopes that are regular only exist in dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...

s 2 ⩽ $n$ < 5.
In graph theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...

, all graphs
Graph may refer to:
Mathematics
* Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of disc ...

with 4 or fewer vertices are planar, however, there is a graph with 5 vertices that is not: ''K''complete graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...

with 5 vertices, where every pair of distinct vertices in a pentagon is joined by unique edges belonging to a pentagram. By Kuratowski's theorem, a finite graph is planar iff
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bicondi ...

it does not contain a subgraph that is a subdivision of ''K''utility graph
As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosophe ...

''K''connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...

vertex-transitive graphs with no Hamiltonian cycle
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vert ...

s.Royle, G"Cubic Symmetric Graphs (The Foster Census)."

The

automorphism group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the gr ...

of the Petersen graph is the symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...

$\backslash mathrm\_$ of order 120 120 may refer to:
*120 (number), the number
* AD 120, a year in the 2nd century AD
* 120 BC, a year in the 2nd century BC
*120 film, a film format for still photography
* ''120'' (film), a 2008 film
* 120 (MBTA bus)
* 120 (New Jersey bus)
* 120 (Ke ...

= 5!.
The chromatic number of the plane is at least five, depending on the choice of set-theoretical axioms: the minimum number of colors
Color (American English) or colour (British English) is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associ ...

required to color the plane such that no pair of points at a distance of 1 has the same color. Whereas the hexagonal Golomb graph and the regular hexagonal tiling generate chromatic numbers of 4 and 7, respectively, a chromatic coloring of 5 can be attained under a more complicated graph where multiple four-coloring Moser spindles are linked so that no monochromatic triples exist in any coloring of the overall graph, as that would generate an equilateral arrangement that tends toward a purely hexagonal structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...

.
The plane contains a total of five Bravais lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
: \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n_ ...

s, or arrays of points defined by discrete translation
Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...

operations: hexagonal
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A '' regular hexagon'' has ...

, oblique
Oblique may refer to:
* an alternative name for the character usually called a slash (punctuation) ( / )
*Oblique angle, in geometry
* Oblique triangle, in geometry
* Oblique lattice, in geometry
* Oblique leaf base, a characteristic shape of the ...

, rectangular
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...

, centered rectangular, and square
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length ad ...

lattices. The plane can also be tiled monohedrally with convex pentagons in fifteen different ways, three of which have Laves tilings as special cases.
Five points are needed to determine a conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a speci ...

, in the same way that two points are needed to determine a line. A Veronese surface in the projective plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...

$\backslash mathbb^5$ of a conic generalizes a linear
Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...

condition for a point to be contained inside a conic.
There are $5$ Platonic solids
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edge ...

in three-dimensional space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called '' parameters'') are required to determine the position of an element (i.e., point). This is the inform ...

: the tetrahedron, cube, octahedron, dodecahedron, and icosahedron. The dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...

in particular contains pentagonal faces, while the icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...

, its dual polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other ...

, has a vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lin ...

that is a regular pentagon. There are also $5$:
☆ Regular polyhedron compounds: the stella octangula, compound of five tetrahedra, compound of five cubes, compound of five octahedra, and compound of ten tetrahedra. Icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of th ...

$\backslash mathrm\; I\_$ is isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...

to the alternating group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or
Basic p ...

on 5 letters $\backslash mathrm\; A\_$ of order 120 120 may refer to:
*120 (number), the number
* AD 120, a year in the 2nd century AD
* 120 BC, a year in the 2nd century BC
*120 film, a film format for still photography
* ''120'' (film), a 2008 film
* 120 (MBTA bus)
* 120 (New Jersey bus)
* 120 (Ke ...

, realized by actions on these uniform polyhedron compounds.
☆ Space-filling convex polyhedra: the triangular prism, hexagonal prism, cube, truncated octahedron, and gyrobifastigium
In geometry, the gyrobifastigium is the 26th Johnson solid (). It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can til ...

. While the cube is the only Platonic solid that can tessellate space on its own, the truncated octahedron and the gyrobifastigium are the only Archimedean and Johnson solids, respectively, that can also tessellate space with their own copies.
☆ Cell-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...

parallelohedra: any parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclidean ...

, as well as the rhombic dodecahedron
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.
Properties
The rhombic dodecahed ...

and elongated dodecahedron, and the hexagonal prism and truncated octahedron. The cube is a special case of a parallelepiped, with the rhombic dodecahedron the only Catalan solid
In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician Eugène Catalan, who first described them in 1865.
The Catalan so ...

to tessellate space on its own.
☆ Regular abstract polyhedra, which include the excavated dodecahedron and the dodecadodecahedron
In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by , and .
The ...

. They have combinatorial symmetries transitive on flags
A flag is a piece of fabric (most often rectangular or quadrilateral) with a distinctive design and colours. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design emplo ...

of their elements, with topologies equivalent to that of toroids and the ability to tile the hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P ...

.
The 5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...

, or pentatope, is the self-dual fourth-dimensional analogue of the tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...

, with Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...

symmetry $\backslash mathrm\_$ of order 120 120 may refer to:
*120 (number), the number
* AD 120, a year in the 2nd century AD
* 120 BC, a year in the 2nd century BC
*120 film, a film format for still photography
* ''120'' (film), a 2008 film
* 120 (MBTA bus)
* 120 (New Jersey bus)
* 120 (Ke ...

= 5 ! and $\backslash mathrm\_$ group structure. Made of five tetrahedra, its Petrie polygon
In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a re ...

is a regular pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be sim ...

and its orthographic projection
Orthographic projection (also orthogonal projection and analemma) is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal ...

is equivalent to the complete graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...

''K''4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...

.
*A regular 120-cell, the dual ''polychoron'' to the regular 600-cell
In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from " ...

, can fit one hundred and twenty 5-cells. Also, five 24-cell
In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octa ...

s fit inside a small stellated 120-cell, the first stellation
In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific el ...

of the 120-cell.
*A subset of the vertices of the small stellated 120-cell are matched by the great duoantiprism star, which is the only uniform
A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, se ...

nonconvex ''duoantiprismatic'' solution in the fourth dimension, constructed from the polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...

cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\tim ...

and made of fifty tetrahedra, ten pentagrammic crossed antiprisms, ten pentagonal antiprisms, and fifty vertices.
*The grand antiprism, which is the only known non-Wythoffian construction of a uniform polychoron, is made of twenty pentagonal antiprisms and three hundred tetrahedra, with a total of one hundred vertices and five hundred edges.
*The abstract four-dimensional 57-cell
In mathematics, the 57-cell (pentacontakaiheptachoron) is a self-dual abstract regular 4-polytope ( four-dimensional polytope). Its 57 cells are hemi-dodecahedra. It also has 57 vertices, 171 edges and 171 two-dimensional faces.
The symmetry o ...

is made of fifty-seven hemi-icosahedral cells, in-which five surround each edge. The 11-cell
In mathematics, the 11-cell (or hendecachoron) is a self-dual abstract regular 4-polytope ( four-dimensional polytope). Its 11 cells are hemi-icosahedral. It has 11 vertices, 55 edges and 55 faces. It has Schläfli symbol , with 3 hemi-icosahedr ...

, another abstract 4-polytope with eleven vertices and fifty-five edges, is made of eleven hemi-dodecahedral cells each with fifteen dodecahedra. The skeleton
A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...

of the hemi-dodecahedron is the Petersen graph.
Overall, the fourth dimension contains five Weyl group
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections ...

s that form a finite number of uniform polychora: $\backslash mathrm\; A\_$, $\backslash mathrm\; B\_$, $\backslash mathrm\; D\_$, $\backslash mathrm\; F\_$, and $\backslash mathrm\; H\_$, with four of these Coxeter groups capable of generating the same finite forms without $\backslash mathrm\; D\_$; accompanied by a fifth or sixth general group of unique 4-prisms of Platonic and Archimedean solids. There are also a total of five Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...

s that generate non-prismatic Eucledian honeycombs in 4-space, alongside five compact hyperbolic Coxeter groups that generate five regular compact hyperbolic honeycombs with finite facets, as with the order-5 5-cell honeycomb and the order-5 120-cell honeycomb, both of which have five cells around each face. Compact hyperbolic honeycombs only exist through the fourth dimension, or rank 5, with paracompact hyperbolic solutions existing through rank 10. Likewise, analogues of three-dimensional icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of th ...

$\backslash mathrm\_$ or four-dimensional $\backslash mathrm\_$ symmetry do not exist in dimensions ''n'' ⩾ 5; however, there is the uniform
A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, se ...

prismatic group $\backslash mathrm\_$ × $\backslash mathrm\_$ in the fifth dimension which contains prisms of regular and uniform 4-polytopes
In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), ...

that have $\backslash mathrm\_$ symmetry.
The 5-simplex
In five-dimensional geometry, a 5- simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°.
The 5 ...

is the five-dimensional analogue of the 5-cell, or 4-simplex; the fifth iteration of $n$-simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...

es in any $n$ dimensions. The 5-simplex has the Coxeter group $\backslash mathrm\_$ as its symmetry group, of order 720 = 6 !, whose group structure is represented by the symmetric group $\backslash mathrm\_$, the only finite symmetric group which has an outer automorphism. The 5-cube
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
It is represented by Schläfli symbol or , constructed as 3 tesseracts ...

, made of ten tesseract
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of ei ...

s and the 5-cell as its vertex figure, is also regular and one of thirty-one uniform 5-polytopes under the Coxeter $\backslash mathrm\; B\_$ hypercubic group. The demipenteract
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' ( penteract) with alternated vertices removed.
It was discovered by Thorold Gosset. Since it was the only semiregular 5 ...

, with one hundred and twenty cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...

, is the only fifth-dimensional semiregular polytope, and has the rectified 5-cell as its vertex figure, which is one of only three semiregular 4-polytopes alongside the rectified 600-cell and the snub 24-cell. In the fifth dimension, there are five regular paracompact honeycombs, all with infinite facets and vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lin ...

s. There are exclusively twelve complex aperiotopes in $\backslash mathbb^n$ complex spaces of dimensions $n$ ⩾ $5$, with fifteen in $\backslash mathbb^4$ and sixteen in $\backslash mathbb^3$; alongside complex polytopes in $\backslash mathbb^5$ and higher under simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...

, hypercubic and orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...

groups, the latter with van Oss polytopes.
There are five exceptional Lie groups: $\backslash mathfrak\_2$, $\backslash mathfrak\_4$, $\backslash mathfrak\_6$, $\backslash mathfrak\_7$, and $\backslash mathfrak\_8$. The smallest of these, $\backslash mathfrak\_2$, can be represented in five-dimensional complex space and projected
Projected is an American rock supergroup consisting of Sevendust members John Connolly and Vinnie Hornsby, Alter Bridge and Creed drummer Scott Phillips, and former Submersed and current Tremonti guitarist Eric Friedman. The band release ...

in the same number of dimensions as a ball
A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used ...

rolling on top of another ball, whose motion
In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and mea ...

is described in two-dimensional space. $\backslash mathfrak\_8$, the largest of all five exceptional groups, also contains the other four as subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...

s and is constructed with one hundred and twenty quaternionic unit icosians that make up the vertices of the 600-cell
In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from " ...

. There are also five solvable group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...

s that are excluded from finite simple groups of Lie type.
The five Mathieu groups constitute the first generation in the happy family of sporadic groups
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups.
A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. Th ...

. These are also the first five sporadic groups to have been described, defined as $\backslash mathrm\_$ multiply transitive permutation groups on $n$ objects, with $n$ ∈ . In particular, $\backslash mathrm\_$, the smallest of all sporadic groups, has a rank 3 action on fifty-five points from an induced action on unordered pairs, as well as two five-dimensional faithful complex irreducible representations over the field with three elements, which is the lowest irreducible dimensional representation of all sporadic group over their respective fields with ''n'' elements. Of precisely five different conjugacy class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other ...

es of maximal subgroups of $\backslash mathrm\_$, one is the almost simple symmetric group $\backslash mathrm\_5$ (of order 5 !), and another is $\backslash mathrm\_$, also almost simple, that functions as a point stabilizer which has $5$ as its largest prime factor
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...

in its group order: 2symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...

s or alternating group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or
Basic p ...

s. $\backslash mathrm\_$ has the first five prime numbers as its distinct prime factors in its order of 2automorphism group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the gr ...

. $\backslash mathrm\_$ generates ''octads'' from code words of Hamming weight
The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of ...

8 from the extended binary Golay code, one of five different Hamming weights the extended binary Golay code uses: 0, 8, 12, 16, and 24. The Witt design and the extended binary Golay code in turn can be used to generate a faithful construction of the 24-dimensional Leech lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by ...

ΛList of basic calculations

In decimal

5 is the only prime number to end in the digit 5 indecimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...

because all other numbers written with a 5 in the ones place are multiples of five, which makes it a 1- automorphic number.
All multiples of 5 will end in either 5 or , and vulgar fractions with 5 or in the denominator
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...

do not yield infinite decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...

expansions because they are prime factors of 10, the base.
In the powers
Powers may refer to:
Arts and media
* ''Powers'' (comics), a comic book series by Brian Michael Bendis and Michael Avon Oeming
** ''Powers'' (American TV series), a 2015–2016 series based on the comics
* ''Powers'' (British TV series), a 200 ...

of 5, every power ends with the number five, and from 5Evolution of the Arabic digit

The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana andGupta
Gupta () is a common surname or last name of Indian origin. It is based on the Sanskrit word गोप्तृ ''goptṛ'', which means 'guardian' or 'protector'. According to historian R. C. Majumdar, the surname ''Gupta'' was adopted by s ...

empires in what is now India had among themselves several different forms that bear no resemblance to the modern digit. The Nagari
Nagari may refer to:
Writing systems
* Nāgarī script, a script used in India during the first millennium
* Devanagari, a script used since the late first millennium and currently in widespread use for the languages of northern India
* Nandina ...

and Punjabi took these digits and all came up with forms that were similar to a lowercase "h" rotated 180°. The Ghubar Arabs transformed the digit in several different ways, producing from that were more similar to the digits 4 or 3 than to 5. It was from those digits that Europeans finally came up with the modern 5.
While the shape of the character for the digit 5 has an ascender in most modern typeface
A typeface (or font family) is the design of lettering that can include variations in size, weight (e.g. bold), slope (e.g. italic), width (e.g. condensed), and so on. Each of these variations of the typeface is a font.
There are thousands ...

s, in typefaces with text figures
Text figures (also known as non-lining, lowercase, old style, ranging, hanging, medieval, billing, or antique figures or numerals) are numerals designed with varying heights in a fashion that resembles a typical line of running text, hence the ...

the glyph usually has a descender
In typography and handwriting, a descender is the portion of a letter that extends below the baseline of a font.
For example, in the letter ''y'', the descender is the "tail", or that portion of the diagonal line which lies below the ''v'' c ...

, as, for example, in .
On the seven-segment display
A seven-segment display is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.
Seven-segment displays are widely used in digital clocks, electronic meters, basi ...

of a calculator, it is represented by five segments at four successive turns from top to bottom, rotating counterclockwise first, then clockwise, and vice-versa.
Science

*Theatomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...

of boron
Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has th ...

.
*The number of appendages on most starfish
Starfish or sea stars are star-shaped echinoderms belonging to the class Asteroidea (). Common usage frequently finds these names being also applied to ophiuroids, which are correctly referred to as brittle stars or basket stars. Starfish ...

, which exhibit pentamerism.
*The most destructive known hurricanes
A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depen ...

rate as Category 5 on the Saffir–Simpson hurricane wind scale.
*The most destructive known tornado
A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...

es rate an F-5 on the Fujita scale
The Fujita scale (F-Scale; ), or Fujita–Pearson scale (FPP scale), is a scale for rating tornado intensity, based primarily on the damage tornadoes inflict on human-built structures and vegetation. The official Fujita scale category is deter ...

or EF-5 on the Enhanced Fujita scale
The Enhanced Fujita scale (abbreviated as EF-Scale) rates tornado intensity based on the severity of the damage they cause. It is used in some countries, including the United States, Canada, China, and Mongolia.
The Enhanced Fujita scale repl ...

.
Astronomy

*Messier object
The Messier objects are a set of 110 astronomical objects catalogued by the French astronomer Charles Messier in his ''Catalogue des Nébuleuses et des Amas d'Étoiles'' (''Catalogue of Nebulae and Star Clusters'').
Because Messier was only in ...

M5, a magnitude 7.0 globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member ...

in the constellation Serpens.
*The New General Catalogue
The ''New General Catalogue of Nebulae and Clusters of Stars'' (abbreviated NGC) is an astronomical catalogue of deep-sky objects compiled by John Louis Emil Dreyer in 1888. The NGC contains 7,840 objects, including galaxies, star clusters and ...

br>objectNGC 5, a magnitude 13

spiral galaxy
Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae''constellation
A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object.
The origins of the earliest constellation ...

Andromeda.
*The Roman numeral V stands for dwarfs (main sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hert ...

stars) in the Yerkes spectral classification scheme.
*The Roman numeral V (usually) stands for the fifth-discovered satellite of a planet or minor planet (e.g. Jupiter V).
*There are five Lagrangian point
In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of t ...

s in a two-body system.
Biology

*There are generally considered to be five senses. *The five basictaste
The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...

s are sweet, salty, sour
The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...

, bitter, and umami
Umami ( from ja, 旨味 ), or savoriness, is one of the five basic tastes. It has been described as savory and is characteristic of broths and cooked meats.
People taste umami through taste receptors that typically respond to glutamates and ...

.
*Almost all amphibians, reptiles, and mammals which have fingers or toes have five of them on each extremity.
Computing

*5 is theASCII
ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of ...

code of the Enquiry character
In computer communications, enquiry is a transmission-control character that requests a response from the receiving station with which a connection has been set up. It represents a signal intended to trigger a response at the receiving end, to se ...

, which is abbreviated to ENQ.
Religion and culture

Hinduism

*The godShiva
Shiva (; sa, शिव, lit=The Auspicious One, Śiva ), also known as Mahadeva (; ɐɦaːd̪eːʋɐ, or Hara, is one of the principal deities of Hinduism. He is the Supreme Being in Shaivism, one of the major traditions within Hindu ...

has five faces and his mantra is also called (five-worded) mantra.
*The goddess Saraswati
Saraswati ( sa, सरस्वती, ) is the Hinduism, Hindu Devi, goddess of knowledge, music, art, speech, wisdom, and learning. She is one of the Tridevi, along with the goddesses Lakshmi and Parvati.
The earliest known mention of Sa ...

, goddess of knowledge and intellectual is associated with or the number 5.
*There are five elements in the universe according to Hindu cosmology
Hindu cosmology is the description of the universe and its states of matter, cycles within time, physical structure, and effects on living entities according to Hindu texts. Hindu cosmology is also intertwined with the idea of a creator who allo ...

: (earth, fire, water, air and space respectively).
*The most sacred tree in Hinduism has 5 leaves in every leaf stunt.
*Most of the flowers have 5 petals in them.
*The epic Mahabharata
The ''Mahābhārata'' ( ; sa, महाभारतम्, ', ) is one of the two major Sanskrit epics of ancient India in Hinduism, the other being the ''Rāmāyaṇa''. It narrates the struggle between two groups of cousins in the Kuru ...

revolves around the battle between Duryodhana
Duryodhana ( sa, दुर्योधन, ) also known as Suyodhana, is the primary antagonist in the Hindu epic ''Mahabharata.'' He was the eldest of the Kauravas, the hundred sons of the blind king Dhritarashtra and his queen Gandhari. Being ...

and his 99 other brothers and the 5 pandava
The Pandavas (Sanskrit: पाण्डव, IAST: Pāṇḍava) refers to the five legendary brothers— Yudhishthira, Bhima, Arjuna, Nakula and Sahadeva—who are the central characters of the Hindu epic ''Mahabharata''. They are acknowledged ...

princes—Dharma
Dharma (; sa, धर्म, dharma, ; pi, dhamma, italic=yes) is a key concept with multiple meanings in Indian religions, such as Hinduism, Buddhism, Jainism, Sikhism and others. Although there is no direct single-word translation for ...

, Arjuna
Arjuna (Sanskrit: अर्जुन, ), also known as Partha and Dhananjaya, is a character in several ancient Hindu texts, and specifically one of the major characters of the Indian epic Mahabharata. In the epic, he is the third among Pand ...

, Bhima
In Hindu epic Mahabharata, Bhima ( sa, भीम, ) is the second among the five Pandavas. The ''Mahabharata'' relates many events that portray the might of Bhima. Bhima was born when Vayu, the wind god, granted a son to Kunti and Pandu. Afte ...

, Nakula
In the Hindu epic Mahabharata, ''Nakula'' (Sanskrit: नकुल) was fourth of the five Pandava brothers. Nakula and Sahadeva were twins blessed to Madri, by Ashwini Kumaras, the divine physicians. Their parents Pandu and Madri - died ea ...

and Sahadeva
Sahadeva (Sanskrit: सहदेव) was the youngest of the Pandava brothers, the five principal protagonists of the epic ''Mahabharata''. He and his twin brother, Nakula, were blessed to King Pandu and Queen Madri by invoking the twin gods A ...

.
Christianity

*There are traditionally five wounds ofJesus Christ
Jesus, likely from he, יֵשׁוּעַ, translit=Yēšūaʿ, label=Hebrew/Aramaic ( AD 30 or 33), also referred to as Jesus Christ or Jesus of Nazareth (among other names and titles), was a first-century Jewish preacher and religious ...

in Christianity
Christianity is an Abrahamic monotheistic religion based on the life and teachings of Jesus of Nazareth. It is the world's largest and most widespread religion with roughly 2.38 billion followers representing one-third of the global populat ...

: the Scourging at the Pillar, the Crowning with Thorns, the wounds in Christ's hands, the wounds in Christ's feet, and the Side Wound of Christ.
Gnosticism

*The number five was an important symbolic number inManichaeism
Manichaeism (;
in New Persian ; ) is a former major religionR. van den Broek, Wouter J. Hanegraaff ''Gnosis and Hermeticism from Antiquity to Modern Times''SUNY Press, 1998 p. 37 founded in the 3rd century AD by the Parthian prophet Mani (A ...

, with heavenly beings, concepts, and others often grouped in sets of five.
* Five Seals in Sethianism
The Sethians were one of the main currents of Gnosticism during the 2nd and 3rd century CE, along with Valentinianism and Basilideanism. According to John D. Turner, it originated in the 2nd century CE as a fusion of two distinct Hellenistic ...

* Five Trees in the Gospel of Thomas
The Gospel of Thomas (also known as the Coptic Gospel of Thomas) is an extra-canonical sayings gospel. It was discovered near Nag Hammadi, Egypt, in December 1945 among a group of books known as the Nag Hammadi library. Scholars speculate ...

Islam

*TheFive Pillars of Islam
The Five Pillars of Islam (' ; also ' "pillars of the religion") are fundamental practices in Islam, considered to be obligatory acts of worship for all Muslims. They are summarized in the famous hadith of Gabriel. The Sunni and Shia agree ...

*Muslim
Muslims ( ar, المسلمون, , ) are people who adhere to Islam, a monotheistic religion belonging to the Abrahamic tradition. They consider the Quran, the foundational religious text of Islam, to be the verbatim word of the God of Abrah ...

s pray to Allah
Allah (; ar, الله, translit=Allāh, ) is the common Arabic word for God. In the English language, the word generally refers to God in Islam. The word is thought to be derived by contraction from '' al- ilāh'', which means "the god", a ...

five times a day
*According to Shia Muslims, the Panjetan or the Five Holy Purified Ones are the members of Muhammad
Muhammad ( ar, مُحَمَّد; 570 – 8 June 632 CE) was an Arab religious, social, and political leader and the founder of Islam. According to Islamic doctrine, he was a prophet divinely inspired to preach and confirm the mono ...

's family: Muhammad
Muhammad ( ar, مُحَمَّد; 570 – 8 June 632 CE) was an Arab religious, social, and political leader and the founder of Islam. According to Islamic doctrine, he was a prophet divinely inspired to preach and confirm the mono ...

, Ali
ʿAlī ibn Abī Ṭālib ( ar, عَلِيّ بْن أَبِي طَالِب; 600 – 661 CE) was the last of four Rightly Guided Caliphs to rule Islam (r. 656 – 661) immediately after the death of Muhammad, and he was the first Shia Imam. ...

, Fatimah
Fāṭima bint Muḥammad ( ar, فَاطِمَة ٱبْنَت مُحَمَّد}, 605/15–632 CE), commonly known as Fāṭima al-Zahrāʾ (), was the daughter of the Islamic prophet Muhammad and his wife Khadija. Fatima's husband was Ali, t ...

, Hasan, and Husayn
Hussein, Hussain, Hossein, Hossain, Huseyn, Husayn, Husein or Husain (; ar, حُسَيْن ), coming from the triconsonantal root Ḥ-S-i-N ( ar, ح س ی ن, link=no), is an Arabic name which is the diminutive of Hassan, meaning "good", " ...

and are often symbolically represented by an image of the Khamsa.
Judaism

*TheTorah
The Torah (; hbo, ''Tōrā'', "Instruction", "Teaching" or "Law") is the compilation of the first five books of the Hebrew Bible, namely the books of Genesis, Exodus, Leviticus, Numbers and Deuteronomy. In that sense, Torah means the ...

contains five books—Genesis
Genesis may refer to:
Bible
* Book of Genesis, the first book of the biblical scriptures of both Judaism and Christianity, describing the creation of the Earth and of mankind
* Genesis creation narrative, the first several chapters of the Book of ...

, Exodus
Exodus or the Exodus may refer to:
Religion
* Book of Exodus, second book of the Hebrew Torah and the Christian Bible
* The Exodus, the biblical story of the migration of the ancient Israelites from Egypt into Canaan
Historical events
* Ex ...

, Leviticus, Numbers, and Deuteronomy
Deuteronomy ( grc, Δευτερονόμιον, Deuteronómion, second law) is the fifth and last book of the Torah (in Judaism), where it is called (Hebrew: hbo, , Dəḇārīm, hewords Moses.html"_;"title="f_Moses">f_Moseslabel=none)_and_th ...

—which are collectively called the Five Books of Moses
Moses hbo, מֹשֶׁה, Mōše; also known as Moshe or Moshe Rabbeinu (Mishnaic Hebrew: מֹשֶׁה רַבֵּינוּ, ); syr, ܡܘܫܐ, Mūše; ar, موسى, Mūsā; grc, Mωϋσῆς, Mōÿsēs () is considered the most important pro ...

, the Pentateuch (Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...

for "five containers", referring to the scroll cases in which the books were kept), or Humash
''Chumash'' (also Ḥumash; he, חומש, or or Yiddish: ; plural Ḥumashim) is a Torah in printed and book bound form (i.e. codex) as opposed to a Sefer Torah, which is a scroll.
The word comes from the Hebrew word for five, (). A more f ...

(, Hebrew
Hebrew (; ; ) is a Northwest Semitic language of the Afroasiatic language family. Historically, it is one of the spoken languages of the Israelites and their longest-surviving descendants, the Jews and Samaritans. It was largely preserved ...

for "fifth").
*The book of Psalms
The Book of Psalms ( or ; he, תְּהִלִּים, , lit. "praises"), also known as the Psalms, or the Psalter, is the first book of the ("Writings"), the third section of the Tanakh, and a book of the Old Testament. The title is derived f ...

is arranged into five books, paralleling the Five Books of Moses
The Torah (; hbo, ''Tōrā'', "Instruction", "Teaching" or "Law") is the compilation of the first five books of the Hebrew Bible, namely the books of Genesis, Exodus, Leviticus, Numbers and Deuteronomy. In that sense, Torah means the ...

.
*The Khamsa, an ancient symbol shaped like a hand with four fingers and one thumb, is used as a protective amulet by Jews; that same symbol is also very popular in Arab
The Arabs (singular: Arab; singular ar, عَرَبِيٌّ, DIN 31635: , , plural ar, عَرَب, DIN 31635: , Arabic pronunciation: ), also known as the Arab people, are an ethnic group mainly inhabiting the Arab world in Western Asia, ...

ic culture, known to protect from envy and the evil eye
The Evil Eye ( grc, ὀφθαλμὸς βάσκανος; grc-koi, ὀφθαλμὸς πονηρός; el, (κακό) μάτι; he, עַיִן הָרָע, ; Romanian: ''Deochi''; it, malocchio; es, mal de ojo; pt, mau-olhado, olho gordo; a ...

.
Sikhism

*The five sacredSikh
Sikhs ( or ; pa, ਸਿੱਖ, ' ) are people who adhere to Sikhism (Sikhi), a monotheistic religion that originated in the late 15th century in the Punjab region of the Indian subcontinent, based on the revelation of Guru Nanak. The ter ...

symbols prescribed by Guru Gobind Singh
Guru Gobind Singh (; 22 December 1666 – 7 October 1708), born Gobind Das or Gobind Rai the tenth Sikh Guru, a spiritual master, warrior, poet and philosopher. When his father, Guru Tegh Bahadur, was executed by Aurangzeb, Guru Gobind Si ...

are commonly known as or the "Five Ks
In Sikhism, the Five Ks ( pa, ਪੰਜ ਕਕਾਰ ) are five items that Guru Gobind Singh Ji, in 1699, commanded Khalsa Sikhs to wear at all times. They are: ''kesh'' (unshorn hair and beard since the Sikh decided to keep it), ''kangha'' (a ...

" because they start with letter K representing in the Punjabi language
Punjabi (; ; , ), sometimes spelled Panjabi, is an Indo-Aryan language of the Punjab region of Pakistan and India. It has approximately 113 million native speakers.
Punjabi is the most widely-spoken first language in Pakistan, with 80.5 m ...

's Gurmukhi script. They are: (unshorn hair), (the comb), (the steel bracelet), (the soldier's shorts), and (the sword) (in Gurmukhi: ). Also, there are five deadly evils: (lust), (anger), (attachment), (greed), and (ego).
Daoism

* 5 Elements * 5 EmperorsOther religions and cultures

*According to ancient Greek philosophers such asAristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of p ...

, the universe is made up of five classical element
Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simi ...

s: water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...

, earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface ...

, air
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...

, fire
Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.
At a certain point in the combustion reaction, called the ignition point, flames are p ...

, and ether
In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula , where R and R′ represent the alkyl or aryl groups. Ethers can again b ...

. This concept was later adopted by medieval alchemists
Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscientific tradition that was historically practiced in China, India, the Muslim world, ...

and more recently by practitioners of Neo-Pagan
Modern paganism, also known as contemporary paganism and neopaganism, is a term for a religion or family of religions influenced by the various historical pre-Christian beliefs of pre-modern peoples in Europe and adjacent areas of North Afric ...

religions such as Wicca
Wicca () is a modern Pagan religion. Scholars of religion categorise it as both a new religious movement and as part of the occultist stream of Western esotericism. It was developed in England during the first half of the 20th century and was ...

.
*The pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aroun ...

, or five-pointed star, bears religious significance in various faiths including Baháʼí, Christianity
Christianity is an Abrahamic monotheistic religion based on the life and teachings of Jesus of Nazareth. It is the world's largest and most widespread religion with roughly 2.38 billion followers representing one-third of the global populat ...

, Freemasonry
Freemasonry or Masonry refers to fraternal organisations that trace their origins to the local guilds of stonemasons that, from the end of the 13th century, regulated the qualifications of stonemasons and their interaction with authorities ...

, Satanism
Satanism is a group of Ideology, ideological and Philosophy, philosophical beliefs based on Satan. Contemporary religious practice of Satanism began with the founding of the atheistic Church of Satan by Anton LaVey in the United States in 19 ...

, Taoism
Taoism (, ) or Daoism () refers to either a school of philosophical thought (道家; ''daojia'') or to a religion (道教; ''daojiao''), both of which share ideas and concepts of Chinese origin and emphasize living in harmony with the ''Tao'' ...

, Thelema
Thelema () is a Western esoteric and occult social or spiritual philosophy and new religious movement founded in the early 1900s by Aleister Crowley (1875–1947), an English writer, mystic, occultist, and ceremonial magician. The word ...

, and Wicca
Wicca () is a modern Pagan religion. Scholars of religion categorise it as both a new religious movement and as part of the occultist stream of Western esotericism. It was developed in England during the first half of the 20th century and was ...

.
*In Cantonese
Cantonese ( zh, t=廣東話, s=广东话, first=t, cy=Gwóngdūng wá) is a language within the Chinese (Sinitic) branch of the Sino-Tibetan languages originating from the city of Guangzhou (historically known as Canton) and its surrounding ar ...

, "five" sounds like the word "not" (character: ). When five appears in front of a lucky number, e.g. "58", the result is considered unlucky.
*In East Asia
East Asia is the eastern region of Asia, which is defined in both geographical and ethno-cultural terms. The modern states of East Asia include China, Japan, Mongolia, North Korea, South Korea, and Taiwan. China, North Korea, South Korea ...

n tradition, there are five elements: (water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...

, fire
Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.
At a certain point in the combustion reaction, called the ignition point, flames are p ...

, earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface ...

, wood
Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin ...

, and metal
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typical ...

). The Japanese
Japanese may refer to:
* Something from or related to Japan, an island country in East Asia
* Japanese language, spoken mainly in Japan
* Japanese people, the ethnic group that identifies with Japan through ancestry or culture
** Japanese diaspor ...

names for the days of the week, Tuesday through Saturday
Saturday is the day of the week between Friday and Sunday. No later than the 2nd century, the Romans named Saturday ("Saturn's Day") for the planet Saturn, which controlled the first hour of that day, according to Vettius Valens. The day's na ...

, come from these elements via the identification of the elements with the five planets visible with the naked eye. Also, the traditional Japanese calendar has a five-day weekly cycle that can be still observed in printed mixed calendars combining Western, Chinese-Buddhist, and Japanese names for each weekday.
*In numerology
Numerology (also known as arithmancy) is the belief in an occult, divine or mystical relationship between a number and one or more coinciding events. It is also the study of the numerical value, via an alphanumeric system, of the letters in ...

, 5 or a series of 555, is often associated with change, evolution, love and abundance.
*Members of The Nation of Gods and Earths, a primarily African American religious organization, call themselves the "Five-Percenters" because they believe that only 5% of mankind is truly enlightened.
Art, entertainment, and media

Fictional entities

* James the Red Engine, a fictional character numbered 5. *Johnny 5
''Short Circuit'' is a 1986 American science fiction comedy film directed by John Badham and written by S. S. Wilson and Brent Maddock. The film's plot centers upon an experimental military robot that is struck by lightning and gains a human-lik ...

is the lead character in the film ''Short Circuit'' (1986)
*Number Five is a character in Lorien Legacies
*Sankara Stones, five magical rocks in ''Indiana Jones and the Temple of Doom
''Indiana Jones and the Temple of Doom'' is a 1984 American action-adventure film directed by Steven Spielberg. It is the second installment in the ''Indiana Jones'' franchise, and a prequel to the 1981 film ''Raiders of the Lost Ark'', fea ...

'' that are sought by the Thuggees for evil purposes
*The Mach Five , the racing car Speed Racer ( in the Japanese version) drives in the anime series of the same name (known as "Mach Go! Go! Go!" in Japan)
*In the works of J. R. R. Tolkien, five wizards (Saruman
Saruman, also called Saruman the White, is a fictional character of J. R. R. Tolkien's fantasy novel ''The Lord of the Rings''. He is leader of the Istari, wizards sent to Middle-earth in human form by the godlike Valar to challenge Sauron, t ...

, Gandalf
Gandalf is a protagonist in J. R. R. Tolkien's novels ''The Hobbit'' and ''The Lord of the Rings''. He is a wizard, one of the ''Istari'' order, and the leader of the Fellowship of the Ring. Tolkien took the name "Gandalf" from the Old Norse ...

, Radagast
Radagast the Brown is a fictional character in J. R. R. Tolkien's legendarium. A wizard and associate of Gandalf, he appears briefly in ''The Hobbit'', ''The Lord of the Rings'', ''The Silmarillion'', and '' Unfinished Tales''.
His role in ...

, Alatar and Pallando) are sent to Middle-earth to aid against the threat of the Dark Lord Sauron
*In the ''A Song of Ice and Fire
''A Song of Ice and Fire'' is a series of epic fantasy novels by the American novelist and screenwriter George R. R. Martin. He began the first volume of the series, ''A Game of Thrones'', in 1991, and it was published in 1996. Martin, who in ...

'' series, the War of the Five Kings is fought between different claimants to the Iron Throne of Westeros, as well as to the thrones of the individual regions of Westeros ( Joffrey Baratheon, Stannis Baratheon
Stannis Baratheon is a fictional character in the ''A Song of Ice and Fire'' series of epic fantasy novels by American author George R. R. Martin, and its television adaptation ''Game of Thrones''. He is the second son of Steffon Baratheon and C ...

, Renly Baratheon, Robb Stark and Balon Greyjoy)
*In ''The Wheel of Time
''The Wheel of Time'' is a series of high fantasy novels by American author Robert Jordan, with Brandon Sanderson as a co-author for the final three novels. Originally planned as a six-book series, ''The Wheel of Time'' spans 14 volumes, in ad ...

'' series, the "Emond's Field Five" are a group of five of the series' main characters who all come from the village of Emond's Field ( Rand al'Thor, Matrim Cauthon, Perrin Aybara, Egwene al'Vere and Nynaeve al'Meara)
* ''Myst'' uses the number 5 as a unique base counting system. In '' The Myst Reader'' series, it is further explained that the number 5 is considered a holy number in the fictional D'ni society.
*Number Five is also a character in The Umbrella Academy comic book and TV series adaptation
Films

*Towards the end of the film '' Monty Python and the Holy Grail'' (1975), the character ofKing Arthur
King Arthur ( cy, Brenin Arthur, kw, Arthur Gernow, br, Roue Arzhur) is a legendary king of Britain, and a central figure in the medieval literary tradition known as the Matter of Britain.
In the earliest traditions, Arthur appears as ...

repeatedly confuses the number five with the number three.
*'' Five Go Mad in Dorset'' (1982) was the first of the long-running series of '' The Comic Strip Presents...'' television comedy films
*''The Fifth Element
''The Fifth Element'' is a 1997 English-language French science fiction action film conceived and directed by Luc Besson, as well as co-written by Besson and Robert Mark Kamen. It stars Bruce Willis, Gary Oldman, Chris Tucker, and Milla ...

'' (1997), a science fiction film
* ''Fast Five
''Fast Five'' (also known as ''Fast & Furious 5'' or ''Fast & Furious 5: Rio Heist'') is a 2011 American action film directed by Justin Lin and written by Chris Morgan. It is the sequel to '' Fast & Furious'' (2009) and the fifth ...

'' (2011), the fifth installment of the ''Fast and Furious'' film series.
*''V for Vendetta
''V for Vendetta'' is a British graphic novel written by Alan Moore and illustrated by David Lloyd (with additional art by Tony Weare). Initially published between 1982 and 1985 in black and white as an ongoing serial in the British antholog ...

'' (2005), produced by Warner Bros., directed by James McTeigue
James McTeigue (born December 29, 1967) is an Australian film and television director. He has been an assistant director on many films, including '' Dark City'' (1998), the ''Matrix'' trilogy (1999–2003) and '' Star Wars: Episode II – Atta ...

, and adapted from Alan Moore
Alan Moore (born 18 November 1953) is an English author known primarily for his work in comic books including ''Watchmen'', '' V for Vendetta'', ''The Ballad of Halo Jones'', ''Swamp Thing'', ''Batman:'' ''The Killing Joke'', and '' From Hel ...

's graphic novel ''V for Vendetta
''V for Vendetta'' is a British graphic novel written by Alan Moore and illustrated by David Lloyd (with additional art by Tony Weare). Initially published between 1982 and 1985 in black and white as an ongoing serial in the British antholog ...

'' prominently features number 5 and Roman Numeral V; the story is based on the historical event in which a group of men attempted to destroy Parliament on November 5, 1605
Music

Groups

*Five (group)
Five (stylised as 5ive) are a British boy band from London consisting of members Sean Conlon, Ritchie Neville, and Scott Robinson. They were formed in 1997 by the same team that managed the Spice Girls before they launched their career. The ...

, a UK Boy band
*The Five (composers)
The Five ( rus, link=no, Могучая кучка, lit. ''Mighty Bunch''), also known as the Mighty Handful, The Mighty Five, and the New Russian School, were five prominent 19th-century Russian composers who worked together to create a distinct ...

, 19th-century Russian composers
* 5 Seconds of Summer, pop band that originated in Sydney, Australia
* Five Americans, American rock band active 1965–1969
*Five Finger Death Punch
Five Finger Death Punch, also abbreviated as 5FDP or FFDP, is an American heavy metal band from Las Vegas, Nevada, formed in 2005. The band originally consisted of vocalist and keyboardist Ivan Moody, rhythm guitarist Zoltan Bathory, lead g ...

, American heavy metal band from Las Vegas, Nevada. Active 2005–present
* Five Man Electrical Band, Canadian rock group billed (and active) as the Five Man Electrical Band, 1969–1975
*Maroon 5
Maroon 5 is an American pop rock band from Los Angeles, California. It currently consists of lead vocalist Adam Levine, keyboardist and rhythm guitarist Jesse Carmichael, lead guitarist James Valentine, drummer Matt Flynn, keyboardist PJ Mo ...

, American pop rock band that originated in Los Angeles, California
* MC5, American punk rock band
*Pentatonix
Pentatonix (abbreviated PTX) is an American a cappella group from Arlington, Texas, currently consisting of vocalists Mitch Grassi, Scott Hoying, Kirstin Maldonado, Kevin Olusola, and Matt Sallee. Characterized by their pop-style arrangeme ...

, a Grammy-winning a cappella group originated in Arlington, Texas
*The 5th Dimension
The 5th Dimension is an American popular music vocal group, whose repertoire includes pop, R&B, soul, jazz, light opera, and Broadway.
Formed as the Versatiles in late 1965, the group changed its name to "the 5th Dimension" by 1966. Betw ...

, American pop vocal group, active 1977–present
*The Dave Clark Five
The Dave Clark Five, also known as the DC5, were an English rock and roll band formed in 1958 in Tottenham, London. Drummer Dave Clark served as the group's leader, producer and co-songwriter. In January 1964 they had their first UK top ten sin ...

, a.k.a. DC5, an English pop rock group comprising Dave Clark, Lenny Davidson, Rick Huxley, Denis Payton, and Mike Smith; active 1958–1970
*The Jackson 5
The Jackson 5 (sometimes stylized as the Jackson 5ive, also known as the Jacksons) are an American pop band composed of members of the Jackson family. The group was founded in 1964 in Gary, Indiana, and for most ...

, American pop rock group featuring various members of the Jackson family; they were billed (and active) as The Jackson 5, 1966–1975
* Hi-5, Australian pop kids group, where it has several international adaptations, and several members throughout the history of the band. It was also a TV show.
* We Five: American folk rock group active 1965–1967 and 1968–1977
*Grandmaster Flash and the Furious Five
Grandmaster Flash and the Furious Five were an American hip hop group formed in the South Bronx of New York City in 1978. The group's members were Grandmaster Flash, Melle Mel, Kidd Creole (not to be confused with Kid Creole), Keef Cowboy ...

: American rap group, 1970–80's
*Fifth Harmony
Fifth Harmony, often shortened to 5H, was an American girl group based in Miami, composed of Ally Brooke, Normani, Dinah Jane, Lauren Jauregui, and previously Camila Cabello until her departure from the group in December 2016. The group si ...

, an American girl group
A girl group is a music act featuring several female singers who generally harmonize together. The term "girl group" is also used in a narrower sense in the United States to denote the wave of American female pop music singing groups, many of wh ...

.
*Ben Folds Five
Ben Folds Five is an American alternative rock trio formed in 1993 in Chapel Hill, North Carolina. The group comprises Ben Folds (lead vocals, piano), Robert Sledge (bass guitar, backing vocals) and Darren Jessee (drums, backing vocals). The gr ...

, an American alternative rock trio, 1993–2000, 2008 and 2011–2013
* R5 (band), an American pop and alternative rock group, 2009–2018
Other uses

*Aperfect fifth
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In classical music from Western culture, a fifth is the interval from the first to the last of five ...

is the most consonant harmony, and is the basis for most western tuning systems.
*Modern musical notation uses a musical staff
In Western musical notation, the staff (US and UK)"staff" in the Collin ...

made of five horizontal lines.
*In harmonic
A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...

s – the fifth partial (or 4th overtone) of a fundamental has a frequency ratio of 5:1 to the frequency of that fundamental. This ratio corresponds to the interval of 2 octaves plus a pure major third. Thus, the interval of 5:4 is the interval of the pure third. A major
Major (commandant in certain jurisdictions) is a military rank of commissioned officer status, with corresponding ranks existing in many military forces throughout the world. When used unhyphenated and in conjunction with no other indicators ...

triad chord when played in just intonation
In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios (such as 3:2 or 4:3) of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals (and ...

(most often the case in a cappella
''A cappella'' (, also , ; ) music is a performance by a singer or a singing group without instrumental accompaniment, or a piece intended to be performed in this way. The term ''a cappella'' was originally intended to differentiate between Rena ...

vocal ensemble singing), will contain such a pure major third.
*The number of completed, numbered piano concertos of Ludwig van Beethoven
Ludwig van Beethoven (baptised 17 December 177026 March 1827) was a German composer and pianist. Beethoven remains one of the most admired composers in the history of Western music; his works rank amongst the most performed of the classica ...

, Sergei Prokofiev
Sergei Sergeyevich Prokofiev; alternative transliterations of his name include ''Sergey'' or ''Serge'', and ''Prokofief'', ''Prokofieff'', or ''Prokofyev''., group=n (27 April .S. 15 April1891 – 5 March 1953) was a Russian composer, p ...

, and Camille Saint-Saëns
Charles-Camille Saint-Saëns (; 9 October 183516 December 1921) was a French composer, organist, conductor and pianist of the Romantic era. His best-known works include Introduction and Rondo Capriccioso (1863), the Second Piano Concerto ...

.
*Using the Latin root, five musicians are called a quintet.
*A scale with five notes per octave is called a pentatonic scale
A pentatonic scale is a musical scale with five notes per octave, in contrast to the heptatonic scale, which has seven notes per octave (such as the major scale and minor scale).
Pentatonic scales were developed independently by many an ...

.
*Five is the lowest possible number that can be the top number of a time signature
The time signature (also known as meter signature, metre signature, or measure signature) is a notational convention used in Western musical notation to specify how many beats (pulses) are contained in each measure ( bar), and which note va ...

with an asymmetric meter
The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pr ...

.
Television

;Stations *Channel 5 (UK)
Channel 5 is a British free-to-air public broadcast television channel launched in 1997. It is the fifth national terrestrial channel in the United Kingdom and is owned by Channel 5 Broadcasting Limited, a wholly-owned subsidiary of American ...

, a television channel that broadcasts in the United Kingdom
*5 (TV channel)
TV5 (also known as 5 and formerly known as ABC) is a Philippine free-to-air television network based in Mandaluyong, with its alternate studios located in Novaliches, Quezon City. It is the flagship property of TV5 Network, Inc. with Cigna ...

(''formerly known as ABC 5 and TV5'') ( DWET-TV channel 5 In Metro Manila) a television network in the Philippines.
;
;Series
*''Babylon 5
''Babylon 5'' is an American space opera television series created by writer and producer J. Michael Straczynski, under the Babylonian Productions label, in association with Straczynski's Synthetic Worlds Ltd. and Warner Bros. Domestic Tele ...

'', a science fiction television series
*The number 5 features in the television series ''Battlestar Galactica'' in regards to the Final Five cylons and the Temple of Five
* ''Hi-5'' (Australian TV series), a television series from Australia
* ''Hi-5'' (UK TV series), a television show from the United Kingdom
* ''Hi-5'' Philippines a television show from the Philippines
*'' Odyssey 5'', a 2002 science fiction television series
*'' Tillbaka till Vintergatan'', a Swedish children's television series featuring a character named "Femman" (meaning five), who can only utter the word 'five'.
*'' The Five'' (talk show): Fox News Channel roundtable current events television show, premiered 2011, so-named for its panel of five commentators.
*'' Yes! PreCure 5'' is a 2007 anime series which follows the adventures of Nozomi and her friends. It is also followed by the 2008 sequel '' Yes! Pretty Cure 5 GoGo!''
*'' The Quintessential Quintuplets'' is a 2019 slice of life romance anime series which follows the everyday life of five identical quintuplets and their interactions with their tutor. It has two seasons, and a final movie is scheduled in summer 2022.
* ''Hawaii Five-0'', CBS
CBS Broadcasting Inc., commonly shortened to CBS, the abbreviation of its former legal name Columbia Broadcasting System, is an American commercial broadcast television and radio network serving as the flagship property of the CBS Entertainme ...

American TV series.
Literature

* ''The Famous Five'' is a series of children's books by British writer Enid Blyton *'' The Power of Five'' is a series of children's books by British writer and screenwriter Anthony Horowitz *'' The Fall of Five'' is a book written under the collective pseudonym Pittacus Lore in the series ''Lorien Legacies'' *'' The Book of Five Rings'' is a text onkenjutsu
is an umbrella term for all ('' ko-budō'') schools of Japanese swordsmanship, in particular those that predate the Meiji Restoration. Some modern styles of kendo and iaido that were established in the 20th century also included modern forms o ...

and the martial arts in general, written by the swordsman Miyamoto Musashi circa 1645
*'' Slaughterhouse-Five'' is a book by Kurt Vonnegut about World War II
Sports

*TheOlympic Games
The modern Olympic Games or Olympics (french: link=no, Jeux olympiques) are the leading international sporting events featuring summer and winter sports competitions in which thousands of athletes from around the world participate in a vari ...

have five interlocked rings as their symbol, representing the number of inhabited continent
A continent is any of several large landmasses. Generally identified by convention rather than any strict criteria, up to seven geographical regions are commonly regarded as continents. Ordered from largest in area to smallest, these seven ...

s represented by the Olympians (Europe, Asia, Africa, Australia and Oceania, and the Americas).
* In AFL Women's
AFL Women's (AFLW) is Australia's national semi-professional Australian rules football league for female players. The first season of the league in February and March 2017 had eight teams; the league expanded to 10 teams in the 2019 season, 1 ...

, the top level of women's Australian rules football
Australian football, also called Australian rules football or Aussie rules, or more simply football or footy, is a contact sport played between two teams of 18 players on an oval field, often a modified cricket ground. Points are scored by ...

, each team is allowed 5 " interchanges" (substitute players), who can be freely substituted at any time.
*In baseball scorekeeping
Baseball scorekeeping is the practice of recording the details of a baseball game as it unfolds. Professional baseball leagues hire official scorers to keep an official record of each game (from which a box score can be generated), but many fans ...

, the number 5 represents the third baseman
A third baseman, abbreviated 3B, is the player in baseball or softball whose responsibility is to defend the area nearest to third base — the third of four bases a baserunner must touch in succession to score a run. In the scoring system ...

's position.
*In basketball
Basketball is a team sport in which two teams, most commonly of five players each, opposing one another on a rectangular court, compete with the primary objective of shooting a basketball (approximately in diameter) through the defender's h ...

:
**The number 5 is used to represent the position of center
Center or centre may refer to:
Mathematics
*Center (geometry), the middle of an object
* Center (algebra), used in various contexts
** Center (group theory)
** Center (ring theory)
* Graph center, the set of all vertices of minimum eccentrici ...

.
**Each team has five players on the court at a given time. Thus, the phrase "five on five" is commonly used to describe standard competitive basketball.
**The "5-second rule" refers to several related rules designed to promote continuous play. In all cases, violation of the rule results in a turnover.
**Under the FIBA
The International Basketball Federation (FIBA ; French: ) is an association of national organizations which governs the sport of basketball worldwide. Originally known as the (hence FIBA), in 1989 it dropped the word ''amateur'' from its nam ...

(used for all international play, and most non-US leagues) and NCAA women's rule sets, a team begins shooting bonus free throws once its opponent has committed five personal fouls in a quarter.
**Under the FIBA rules, A player fouls out and must leave the game after committing five fouls
*Five-a-side football
Five-a-side football is a version of minifootball, in which each team fields five players (four outfield players and a goalkeeper). Other differences from football include a smaller pitch, smaller goals, and a reduced game duration. Matches ar ...

is a variation of association football
Association football, more commonly known as football or soccer, is a team sport played between two teams of 11 players who primarily use their feet to propel the ball around a rectangular field called a pitch. The objective of the game is t ...

in which each team fields five players.
*In ice hockey
Ice hockey (or simply hockey) is a team sport played on ice skates, usually on an ice skating rink with lines and markings specific to the sport. It belongs to a family of sports called hockey. In ice hockey, two opposing teams use ice ho ...

:
** A major penalty lasts five minutes.
** There are five different ways that a player can score a goal (teams at even strength, team on the power play, team playing shorthanded, penalty shot, and empty net).
** The area between the goaltender's legs is known as the five-hole.
*In most rugby league
Rugby league football, commonly known as just rugby league and sometimes football, footy, rugby or league, is a full-contact sport played by two teams of thirteen players on a rectangular field measuring 68 metres (75 yards) wide and 11 ...

competitions, the starting left wing wears this number. An exception is the Super League
The Super League (officially known as the Betfred Super League due to sponsorship from Betfred and legally known as Super League Europe), is the top-level of the British rugby league system. At present the league consists of twelve teams, of ...

, which uses static squad numbering.
*In rugby union
Rugby union, commonly known simply as rugby, is a close-contact team sport that originated at Rugby School in the first half of the 19th century. One of the two codes of rugby football, it is based on running with the ball in hand. In its m ...

:
** A try is worth 5 points.
** One of the two starting lock forwards wears number 5, and usually jumps at number 4 in the line-out.
** In the French variation of the bonus points system, a bonus point in the league standings is awarded to a team that loses by 5 or fewer points.
Technology

*5 is the most common number of gears for automobiles withmanual transmission
A manual transmission (MT), also known as manual gearbox, standard transmission (in Canada, the United Kingdom, and the United States), or stick shift (in the United States), is a multi-speed motor vehicle transmission system, where gear change ...

.
*In radio communication, the term " Five by five" is used to indicate perfect signal strength and clarity.
*On almost all devices with a numeric keypad
A numeric keypad, number pad, numpad, or ten key,
is the palm-sized, usually-17-key section of a standard computer keyboard, usually on the far right. It provides calculator-style efficiency for entering numbers. The idea of a 10-key nu ...

such as telephones, computers, etc., the 5 key has a raised dot or raised bar to make dialing easier. Persons who are blind or have low vision find it useful to be able to feel the keys of a telephone. All other numbers can be found with their relative position around the 5 button (on computer keyboards, the 5 key of the numpad
A numeric keypad, number pad, numpad, or ten key,
is the palm-sized, usually-17-key section of a standard computer keyboard, usually on the far right. It provides calculator-style efficiency for entering numbers. The idea of a 10-key nu ...

has the raised dot or bar, but the 5 key that shifts with % does not).
*On most telephone
A telephone is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into el ...

s, the 5 key is associated with the letters J, K, and L, but on some of the BlackBerry
The blackberry is an edible fruit produced by many species in the genus '' Rubus'' in the family Rosaceae, hybrids among these species within the subgenus ''Rubus'', and hybrids between the subgenera ''Rubus'' and ''Idaeobatus''. The taxonomy ...

phones, it is the key for G and H.
*The Pentium
Pentium is a brand used for a series of x86 architecture-compatible microprocessors produced by Intel. The Pentium (original), original Pentium processor from which the brand took its name was first released on March 22, 1993. After that, th ...

, coined by Intel Corporation
Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 series ...

, is a fifth-generation x86 architecture microprocessor
A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...

.
*The resin identification code used in recycling to identify polypropylene
Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.
Polypropylene
belongs to the group of polyolefins and i ...

.
Miscellaneous fields

Five can refer to: *"Give me five" is a common phrase used preceding ahigh five High five is a friendly gesture in which one individual slaps another's hand.
High five (and variants such as Hi5, Hi-5, and Hi-Five) may also refer to:
Music
* Hi-5 (Australian group), an Australian children's musical group
* Hi-5 (Greek band ...

.
*An informal term for the British Security Service, MI5
The Security Service, also known as MI5 ( Military Intelligence, Section 5), is the United Kingdom's domestic counter-intelligence and security agency and is part of its intelligence machinery alongside the Secret Intelligence Service (MI6), G ...

.
*Five babies born at one time are quintuplets. The most famous set of quintuplets were the Dionne quintuplets
The Dionne quintuplets (; born May 28, 1934) are the first quintuplets known to have survived their infancy. The identical girls were born just outside Callander, Ontario, near the village of Corbeil. All five survived to adulthood.
The Di ...

born in the 1930s.
*In the United States legal system, the Fifth Amendment to the United States Constitution
The Fifth Amendment (Amendment V) to the United States Constitution addresses criminal procedure and other aspects of the Constitution. It was ratified, along with nine other articles, in 1791 as part of the Bill of Rights. The Fifth Amendm ...

can be referred to in court as "pleading the fifth", absolving the defendant from self-incrimination.
*Pentameter
Pentameter ( grc, πεντάμετρος, 'measuring five (feet)') is a poetic meter. А poem is said to be written in a particular pentameter when the lines
Line most often refers to:
* Line (geometry), object with zero thickness and curvature ...

is verse with five repeating feet per line; iambic pentameter
Iambic pentameter () is a type of metric line used in traditional English poetry and verse drama. The term describes the rhythm, or meter, established by the words in that line; rhythm is measured in small groups of syllables called "feet". "Iamb ...

was the most popular form in Shakespeare
William Shakespeare ( 26 April 1564 – 23 April 1616) was an English playwright, poet and actor. He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. He is often called England's nation ...

.
* Quintessence, meaning "fifth element", refers to the elusive fifth element that completes the basic four elements (water, fire, air, and earth)
*The designation of an Interstate Highway
The Dwight D. Eisenhower National System of Interstate and Defense Highways, commonly known as the Interstate Highway System, is a network of controlled-access highways that forms part of the National Highway System in the United States. Th ...

(Interstate 5
Interstate 5 (I-5) is the main north–south Interstate Highway on the West Coast of the United States, running largely parallel to the Pacific coast of the contiguous U.S. from Mexico to Canada. It travels through the states of Californ ...

) that runs from San Diego
San Diego ( , ; ) is a city on the Pacific Ocean coast of Southern California located immediately adjacent to the Mexico–United States border. With a 2020 population of 1,386,932, it is the List of United States cities by population, eigh ...

, California
California is a state in the Western United States, located along the Pacific Coast. With nearly 39.2million residents across a total area of approximately , it is the most populous U.S. state and the 3rd largest by area. It is also the mo ...

to Blaine, Washington
Blaine is a city in Whatcom County, Washington, United States. The city's northern boundary is the Canada–U.S. border; the Peace Arch international monument straddles the border of both countries. The population was 5,884 at the 2020 censu ...

. In addition, all major north-south Interstate Highways in the United States end in 5.
*In the computer game ''Riven
''Riven'' is a puzzle adventure video game. It is the sequel to '' Myst'' and second in the ''Myst'' series of games. Developed by Cyan Worlds, it was initially published by Red Orb Entertainment, a division of Broderbund. ''Riven'' was dist ...

'', 5 is considered a holy number, and is a recurring theme throughout the game, appearing in hundreds of places, from the number of islands in the game to the number of bolts on pieces of machinery.
*''The Garden of Cyrus
''The Garden of Cyrus'', or ''The Quincuncial Lozenge, or Network Plantations of the Ancients, naturally, artificially, mystically considered'', is a discourse by Sir Thomas Browne. First published in 1658, along with its diptych companion '' U ...

'' (1658) by Sir Thomas Browne
Sir Thomas Browne (; 19 October 160519 October 1682) was an English polymath and author of varied works which reveal his wide learning in diverse fields including science and medicine, religion and the esoteric. His writings display a deep cur ...

is a Pythagorean discourse based upon the number 5.
*The holy number of Discordianism
Discordianism is a religion, philosophy, or paradigm centered on Eris, a.k.a. Discordia, the Goddess of chaos. Discordianism uses archetypes or ideals associated with her. It was founded after the 1963 publication of its "holy book," the '' P ...

, as dictated by the Law of Fives.
*The number of Justices on the Supreme Court of the United States
The Supreme Court of the United States (SCOTUS) is the highest court in the federal judiciary of the United States. It has ultimate appellate jurisdiction over all U.S. federal court cases, and over state court cases that involve a point o ...

necessary to render a majority decision.
*The number of dots in a quincunx
A quincunx () is a geometric pattern consisting of five points arranged in a cross, with four of them forming a square or rectangle and a fifth at its center. The same pattern has other names, including "in saltire" or "in cross" in heraldry (dep ...

.
*The number of permanent members with veto power on the United Nations Security Council
The United Nations Security Council (UNSC) is one of the six principal organs of the United Nations (UN) and is charged with ensuring international peace and security, recommending the admission of new UN members to the General Assembly, a ...

.
*The number of sides and the number of angles in a pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be simp ...

.
*The number of points in a pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aroun ...

.
*The number of Korotkoff sounds when measuring blood pressure
Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" r ...

*The drink Five Alive is named for its five ingredients. The drink punch derives its name after the Sanskrit पञ्च (pañc) for having five ingredients.
*The Keating Five were five United States Senators
The United States Senate is the upper chamber of the United States Congress, with the House of Representatives being the lower chamber. Together they compose the national bicameral legislature of the United States.
The composition and pow ...

accused of corruption in 1989.
*The Inferior Five: Merryman, Awkwardman, The Blimp, White Feather, and Dumb Bunny. DC Comics
DC Comics, Inc. (doing business as DC) is an American comic book publisher and the flagship unit of DC Entertainment, a subsidiary of Warner Bros. Discovery.
DC Comics is one of the largest and oldest American comic book companies, with thei ...

parody superhero team.
* No. 5 is the name of the iconic fragrance created by Coco Chanel.
*The Committee of Five was delegated to draft the United States
The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...

Declaration of Independence
A declaration of independence or declaration of statehood or proclamation of independence is an assertion by a polity in a defined territory that it is independent and constitutes a state. Such places are usually declared from part or all of th ...

.
*The five-second rule is a commonly used rule of thumb
In English, the phrase ''rule of thumb'' refers to an approximate method for doing something, based on practical experience rather than theory. This usage of the phrase can be traced back to the 17th century and has been associated with various t ...

for dropped food
Food is any substance consumed by an organism for nutritional support. Food is usually of plant, animal, or fungal origin, and contains essential nutrients, such as carbohydrates, fats, proteins, vitamins, or minerals. The substance is i ...

.
*555 95472, usually referred to simply as 5, is a minor male character in the comic strip ''Peanuts''.
See also

*Five Families
The Five Families refers to five major New York City organized crime families of the Italian American Mafia formed in 1931 by Salvatore Maranzano following his victory in the Castellammarese War.
Maranzano reorganized the Italian American gang ...

* Five Nations (disambiguation)
* 555 (number)
* List of highways numbered 5
References

*Wells, D. ''The Penguin Dictionary of Curious and Interesting Numbers
''The Penguin Dictionary of Curious and Interesting Numbers'' is a reference book for recreational mathematics and elementary number theory written by David Wells. The first edition was published in paperback by Penguin Books in 1986 in the UK, ...

'' London: Penguin Group. (1987): 58–67
External links

* *The Number 5

The Positive Integer 5

{{DEFAULTSORT:5 (Number) Integers 5 (number)