2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
   HOME

TheInfoList



OR:

In
enzymology Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
, a 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase () is an enzyme that
catalyzes Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
the chemical reaction :succinyl-CoA + (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate + H2O \rightleftharpoons CoA + N-succinyl-L-2-amino-6-oxoheptanedioate The 3 substrates of this enzyme are succinyl-CoA, (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate, and H2O, whereas its two products are CoA and N-succinyl-L-2-amino-6-oxoheptanedioate. This enzyme belongs to the family of transferases, specifically those
acyltransferase Acyltransferase is a type of transferase enzyme that acts upon acyl groups. Examples include: * Glyceronephosphate O-acyltransferase * Lecithin-cholesterol acyltransferase *Long-chain-alcohol O-fatty-acyltransferase In enzymology, a long-chain- ...
s transferring groups other than aminoacyl groups. The systematic name of this enzyme class is succinyl-CoA:(S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase. Other names in common use include tetrahydropicolinate succinylase, tetrahydrodipicolinate N-succinyltransferase, tetrahydrodipicolinate succinyltransferase, succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase, succinyl-CoA:2,3,4,5-tetrahydropyridine-2,6-dicarboxylate, and N-succinyltransferase. This enzyme participates in
lysine biosynthesis Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
.


Structural studies

As of late 2007, 4 structures have been solved for this class of enzymes, with PDB accession codes , , , and .


References

* EC 2.3.1 Enzymes of known structure {{2.3-enzyme-stub