10th-century alchemists
   HOME

TheInfoList



OR:

1 (one, unit, unity) is a number representing a single or the only
entity An entity is something that exists as itself, as a subject or as an object, actually or potentially, concretely or abstractly, physically or not. It need not be of material existence. In particular, abstractions and legal fictions are usually re ...
. 1 is also a numerical digit and represents a single
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (al ...
of
counting Counting is the process of determining the number of elements of a finite set of objects, i.e., determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every ele ...
or
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
. For example, a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
of ''unit length'' is a line segment of
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Inter ...
 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest
positive integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
. It is also sometimes considered the first of the
infinite sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a
multiplicative identity In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures s ...
, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
; this was not universally accepted until the mid-20th century. Additionally, 1 is the smallest possible difference between two distinct
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. The unique mathematical properties of the number have led to its unique uses in other fields, ranging from science to sports. It commonly denotes the first, leading, or top thing in a group.


Etymology

The word ''one'' can be used as a noun, an adjective, and a pronoun. It comes from the English word ''an'', which comes from the Proto-Germanic root . The Proto-Germanic root comes from the Proto-Indo-European root ''*oi-no-''. Compare the Proto-Germanic root to Old Frisian ''an'', Gothic ''ains'', Danish ''en'', Dutch ''een'',
German German(s) may refer to: * Germany (of or related to) **Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ge ...
''eins'' and
Old Norse Old Norse, Old Nordic, or Old Scandinavian, is a stage of development of North Germanic dialects before their final divergence into separate Nordic languages. Old Norse was spoken by inhabitants of Scandinavia and their overseas settlement ...
''einn''. Compare the Proto-Indo-European root ''*oi-no-'' (which means "one, single") to
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. * Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancesto ...
''oinos'' (which means "ace" on dice),
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of t ...
''unus'' (one),
Old Persian Old Persian is one of the two directly attested Old Iranian languages (the other being Avestan) and is the ancestor of Middle Persian (the language of Sasanian Empire). Like other Old Iranian languages, it was known to its native speakers as (Ir ...
,
Old Church Slavonic Old Church Slavonic or Old Slavonic () was the first Slavic literary language. Historians credit the 9th-century Byzantine missionaries Saints Cyril and Methodius with standardizing the language and using it in translating the Bible and othe ...
''-inu'' and ''ino-'', Lithuanian ''vienas'',
Old Irish Old Irish, also called Old Gaelic ( sga, Goídelc, Ogham, Ogham script: ᚌᚑᚔᚇᚓᚂᚉ; ga, Sean-Ghaeilge; gd, Seann-Ghàidhlig; gv, Shenn Yernish or ), is the oldest form of the Goidelic languages, Goidelic/Gaelic language for which ...
''oin'' and Breton ''un'' (one).


As a number

One, sometimes referred to as unity, is the first non-zero
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
. It is thus the integer after zero. Any number multiplied by one remains that number, as one is the identity for
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addi ...
. As a result, 1 is its own
factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \ ...
, its own square and
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose '' square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
, its own
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the onl ...
and
cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. ...
, and so on. One is also the result of the empty product, as any number multiplied by one is itself. It is also the only natural number that is neither composite nor
prime A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
with respect to
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
, but is instead considered a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (al ...
(meaning of
ring theory In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their rep ...
).


As a digit

The glyph used today in the Western world to represent the number 1, a vertical line, often with a
serif In typography, a serif () is a small line or stroke regularly attached to the end of a larger stroke in a letter or symbol within a particular font or family of fonts. A typeface or "font family" making use of serifs is called a serif typeface ( ...
at the top and sometimes a short horizontal line at the bottom, traces its roots back to the Brahmic script of ancient India, where it was a simple vertical line. It was transmitted to Europe via the Maghreb and Andalusia during the Middle Ages, through scholarly works written in Arabic. In some countries, the serif at the top is sometimes extended into a long upstroke, sometimes as long as the vertical line, which can lead to confusion with the glyph used for seven in other countries. In styles in which the digit 1 is written with a long upstroke, the digit 7 is often written with a horizontal stroke through the vertical line, to disambiguate them. Styles that do not use the long upstroke on digit 1 usually do not use the horizontal stroke through the vertical of the digit 7 either. While the shape of the character for the digit 1 has an ascender in most modern
typeface A typeface (or font family) is the design of lettering that can include variations in size, weight (e.g. bold), slope (e.g. italic), width (e.g. condensed), and so on. Each of these variations of the typeface is a font. There are thousands o ...
s, in typefaces with
text figures Text figures (also known as non-lining, lowercase, old style, ranging, hanging, medieval, billing, or antique figures or numerals) are numerals designed with varying heights in a fashion that resembles a typical line of running text, hence the ...
, the glyph usually is of
x-height upright 2.0, alt=A diagram showing the line terms used in typography In typography, the x-height, or corpus size, is the distance between the baseline and the mean line of lowercase letters in a typeface. Typically, this is the height of the let ...
, as, for example, in . Many older typewriters lack a separate key for ''1'', using the lowercase letter ''l'' or uppercase ''I'' instead. It is possible to find cases when the uppercase ''J'' is used, though it may be for decorative purposes. In some typefaces, different glyphs are used for I and 1, but the numeral 1 resembles a small caps version of I, with parallel serifs at top and bottom, with the capital I being full-height.


Mathematics


Definitions

Mathematically, 1 is: *in
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
(
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
) and
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arith ...
, the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
that follows 0 and the multiplicative
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures ...
of the integers,
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one- dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Ever ...
s and
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s; *more generally, in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, the multiplicative identity (also called ''unity''), usually of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
or a ring. Formalizations of the natural numbers have their own representations of 1. In the
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
, 1 is the successor of 0. In '' Principia Mathematica'', it is defined as the set of all singletons (sets with one element), and in the Von Neumann cardinal assignment of natural numbers, it is defined as the set . In a multiplicative
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
or
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids a ...
, the
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures ...
is sometimes denoted 1, but ''e'' (from the German ''Einheit'', "unity") is also traditional. However, 1 is especially common for the multiplicative identity of a ring, i.e., when an addition and 0 are also present. When such a ring has characteristic ''n'' not equal to 0, the element called 1 has the property that (where this 0 is the additive identity of the ring). Important examples are
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
s. By definition, 1 is the magnitude,
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), a ...
, or norm of a unit complex number,
unit vector In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vec ...
, and a unit matrix (more usually called an identity matrix). Note that the term ''unit matrix'' is sometimes used to mean something quite different. By definition, 1 is the
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking ...
of an event that is absolutely or almost certain to occur. In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, 1 is sometimes used to denote the
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
of a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) * Categories (Peirce) * ...
. In
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, 1 is the value of Legendre's constant, which was introduced in 1808 by
Adrien-Marie Legendre Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are name ...
in expressing the asymptotic behavior of the prime-counting function. Legendre's constant was originally conjectured to be approximately 1.08366, but was proven to equal exactly 1 in 1899.


Properties

Tallying is often referred to as "base 1", since only one mark – the tally itself – is needed. This is more formally referred to as a unary numeral system. Unlike base 2 or base 10, this is not a
positional notation Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
. Since the base 1 exponential function (1''x'') always equals 1, its
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ...
does not exist (which would be called the
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 ...
base 1 if it did exist). There are two ways to write the real number 1 as a
recurring decimal A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. It can be shown that a number is rational if ...
: as 1.000..., and as 0.999.... 1 is the first figurate number of every kind, such as triangular number,
pentagonal number A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The ...
and
centered hexagonal number In mathematics and combinatorics, a centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following ...
, to name just a few. In many mathematical and engineering problems, numeric values are typically ''normalized'' to fall within the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
from 0 to 1, where 1 usually represents the maximum possible value in the range of parameters. Likewise, vectors are often normalized into
unit vector In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vec ...
s (i.e., vectors of magnitude one), because these often have more desirable properties. Functions, too, are often normalized by the condition that they have
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
one, maximum value one, or square integral one, depending on the application. Because of the multiplicative identity, if ''f''(''x'') is a
multiplicative function In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is ...
, then ''f''(1) must be equal to 1. It is also the first and second number in the
Fibonacci Fibonacci (; also , ; – ), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western ...
sequence (0 being the zeroth) and is the first number in many other mathematical sequences. The definition of a field requires that 1 must not be equal to 0. Thus, there are no fields of characteristic 1. Nevertheless, abstract algebra can consider the
field with one element In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The nam ...
, which is not a singleton and is not a set at all. 1 is the most common leading digit in many sets of data, a consequence of
Benford's law Benford's law, also known as the Newcomb–Benford law, the law of anomalous numbers, or the first-digit law, is an observation that in many real-life sets of numerical data, the leading digit is likely to be small.Arno Berger and Theodore ...
. 1 is the only known Tamagawa number for a simply connected algebraic group over a number field. The
generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series ...
that has all coefficients 1 is given by \frac = 1+x+x^2+x^3+ \ldots This power series converges and has finite value
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bic ...
, x, < 1 .


Primality

1 is by convention neither a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
nor a composite number, but a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (al ...
(meaning of
ring theory In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their rep ...
) like −1 and, in the
Gaussian integers In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
, '' i'' and −''i''. The
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the ...
guarantees unique factorization over the integers only up to units. For example, , but if units are included, is also equal to, say, among infinitely many similar "factorizations". 1 appears to meet the naïve definition of a prime number, being evenly divisible only by 1 and itself (also 1). As such, some mathematicians considered it a prime number as late as the middle of the 20th century, but mathematical consensus has generally and since then universally been to exclude it for a variety of reasons (such as complicating the fundamental theorem of arithmetic and other theorems related to prime numbers). 1 is the only positive integer divisible by exactly one positive integer, whereas prime numbers are divisible by exactly two positive integers, composite numbers are divisible by more than two positive integers, and zero is divisible by all positive integers.


Table of basic calculations


In technology

* The resin identification code used in recycling to identify
polyethylene terephthalate Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods ...
. *The ITU country code for the
North American Numbering Plan The North American Numbering Plan (NANP) is a telephone numbering plan for twenty-five regions in twenty countries, primarily in North America and the Caribbean. This group is historically known as World Zone 1 and has the international calling ...
area, which includes the United States, Canada, and parts of the Caribbean. *A
binary code A binary code represents text, computer processor instructions, or any other data using a two-symbol system. The two-symbol system used is often "0" and "1" from the binary number system. The binary code assigns a pattern of binary digits, also ...
is a sequence of 1 and 0 that is used in
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These pr ...
s for representing any kind of
data In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpret ...
. *In many physical devices, 1 represents the value for "on", which means that electricity is flowing. *The numerical value of true in many programming languages. *1 is the
ASCII ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of ...
code of " Start of Header".


In science

*
Dimensionless quantities A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1) ...
are also known as quantities of dimension one. *1 is the atomic number of hydrogen. *+1 is the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respect ...
of
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s and protons. *Group 1 of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of c ...
consists of the
alkali metals The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
. *Period 1 of the periodic table consists of just two elements, hydrogen and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
. *The dwarf planet Ceres has the minor-planet designation 1 Ceres because it was the first asteroid to be discovered. *The Roman numeral I often stands for the first-discovered satellite of a
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
or
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''mino ...
(such as Neptune I, a.k.a. Triton). For some earlier discoveries, the Roman numerals originally reflected the increasing distance from the primary instead.


In philosophy

In the philosophy of
Plotinus Plotinus (; grc-gre, Πλωτῖνος, ''Plōtînos'';  – 270 CE) was a philosopher in the Hellenistic tradition, born and raised in Roman Egypt. Plotinus is regarded by modern scholarship as the founder of Neoplatonism. His teacher wa ...
(and that of other
neoplatonist Neoplatonism is a strand of Platonic philosophy that emerged in the 3rd century AD against the background of Hellenistic philosophy and religion. The term does not encapsulate a set of ideas as much as a chain of thinkers. But there are some ide ...
s),
The One The ONE is a shopping centre in Tsim Sha Tsui, Kowloon, Hong Kong Hong Kong ( (US) or (UK); , ), officially the Hong Kong Special Administrative Region of the People's Republic of China ( abbr. Hong Kong SAR or HKSAR), is a city ...
is the ultimate reality and source of all existence. Philo of Alexandria (20 BC – AD 50) regarded the number one as God's number, and the basis for all numbers ("De Allegoriis Legum," ii.12 .66. The Neopythagorean philosopher Nicomachus of Gerasa affirmed that one is not a number, but the source of number. He also believed the number two is the embodiment of the origin of otherness. His
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
was recovered by
Boethius Anicius Manlius Severinus Boethius, commonly known as Boethius (; Latin: ''Boetius''; 480 – 524 AD), was a Roman senator, consul, ''magister officiorum'', historian, and philosopher of the Early Middle Ages. He was a central figure in the tra ...
in his Latin translation of Nicomachus's treatise '' Introduction to Arithmetic''.


In sports

In many professional sports, the number 1 is assigned to the player who is first or leading in some respect, or otherwise important; the number is printed on his sports uniform or equipment. This is the
pitcher In baseball, the pitcher is the player who throws ("pitches") the baseball from the pitcher's mound toward the catcher to begin each play, with the goal of retiring a batter, who attempts to either make contact with the pitched ball or draw ...
in
baseball Baseball is a bat-and-ball sport played between two teams of nine players each, taking turns batting and fielding. The game occurs over the course of several plays, with each play generally beginning when a player on the fielding t ...
, the
goalkeeper In many team sports which involve scoring goals, the goalkeeper (sometimes termed goaltender, netminder, GK, goalie or keeper) is a designated player charged with directly preventing the opposing team from scoring by blocking or intercepting ...
in association football (soccer), the starting fullback in most of
rugby league Rugby league football, commonly known as just rugby league and sometimes football, footy, rugby or league, is a full-contact sport played by two teams of thirteen players on a rectangular field measuring 68 metres (75 yards) wide and 11 ...
, the starting loosehead prop in
rugby union Rugby union, commonly known simply as rugby, is a close-contact team sport that originated at Rugby School in the first half of the 19th century. One of the two codes of rugby football, it is based on running with the ball in hand. In its m ...
and the previous year's world champion in
Formula One Formula One (also known as Formula 1 or F1) is the highest class of international racing for open-wheel single-seater formula racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). The World Drivers' Championship ...
. 1 may be the lowest possible player number, like in the American–Canadian
National Hockey League The National Hockey League (NHL; french: Ligue nationale de hockey—LNH, ) is a professional ice hockey league in North America comprising 32 teams—25 in the United States and 7 in Canada. It is considered to be the top ranked professiona ...
(NHL) since the 1990s or in
American football American football (referred to simply as football in the United States and Canada), also known as gridiron, is a team sport played by two teams of eleven players on a rectangular field with goalposts at each end. The offense, the team wit ...
.


In other fields

*''Number One'' is
Royal Navy The Royal Navy (RN) is the United Kingdom's naval warfare force. Although warships were used by English and Scottish kings from the early medieval period, the first major maritime engagements were fought in the Hundred Years' War against Fr ...
informal usage for the chief executive officer of a ship, the captain's deputy responsible for discipline and all normal operation of a ship and its crew. *1 is the value of an ace in many playing card games, such as cribbage. * List of highways numbered 1 *
List of public transport routes numbered 1 In public transport, Route 1 may refer to: * Route 1 (MTA Maryland), a bus route in Baltimore, Maryland *Barcelona Metro line 1 * Line 1 (Beijing Subway) * Line 1 (Hangzhou Metro) * Citybus Route 1 in Hong Kong * KMB Route 1 in Hong Kong *London B ...
*1 is often used to denote the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years dif ...
month of January. * 1 CE, the first year of the
Common Era Common Era (CE) and Before the Common Era (BCE) are year notations for the Gregorian calendar (and its predecessor, the Julian calendar), the world's most widely used calendar era. Common Era and Before the Common Era are alternatives to the or ...
*01, the former dialling code for Greater London (now 020) *For Pythagorean
numerology Numerology (also known as arithmancy) is the belief in an occult, divine or mystical relationship between a number and one or more coinciding events. It is also the study of the numerical value, via an alphanumeric system, of the letters in w ...
(a
pseudoscience Pseudoscience consists of statements, beliefs, or practices that claim to be both scientific and factual but are incompatible with the scientific method. Pseudoscience is often characterized by contradictory, exaggerated or unfalsifiable claim ...
), the number 1 is the number that means beginning, new beginnings, new cycles, it is a unique and absolute number. * PRS One, a German paraglider design *+1 is the code for international telephone calls to countries in the
North American Numbering Plan The North American Numbering Plan (NANP) is a telephone numbering plan for twenty-five regions in twenty countries, primarily in North America and the Caribbean. This group is historically known as World Zone 1 and has the international calling ...
. * In some countries, a
street address An address is a collection of information, presented in a mostly fixed format, used to give the location of a building, apartment, or other structure or a plot of land, generally using border, political boundaries and street names as references, ...
of "1" is considered prestigious and developers will attempt to obtain such an address for a building, to the point of lobbying for a street or portion of a street to be renamed, even if this makes the address less useful for wayfinding. The construction of a new street to serve the development may also provide the possibility of a "1" address. An example of such an address is the
Apple Campus The Apple Campus is the former corporate headquarters of Apple Inc. from 1993 until 2017, when it was largely replaced by Apple Park, though it is still used by Apple as office and lab space. The campus is located at 1 Infinite Loop in Cuperti ...
, located at 1 Infinite Loop,
Cupertino, California Cupertino ( ) is a city in Santa Clara County, California, United States, directly west of San Jose on the western edge of the Santa Clara Valley with portions extending into the foothills of the Santa Cruz Mountains. The population was 57, ...
.


See also

*
−1 In mathematics, −1 (also known as negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less ...
* +1 (disambiguation) * List of mathematical constants * One (word) *
Root of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important ...
* List of highways numbered 1


References


External links


The Number 1The Positive Integer 1
{{DEFAULTSORT:1 (Number) Integers