Submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class ''C''''r'' for a fixed , and all morphisms are differentiable of class ''C''''r''. Immersed submanifolds An immersed submanifold of a manifold ''M'' is the image ''S'' of an immersion map ; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (onetoone) – it can have selfintersections. More narrowly, one can require that the map be an injection (onetoone), in which we call it an injective immersion, and define an immersed submanifold to be the image subset ''S'' together with a topology and differentia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Foliation
In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of the real coordinate space R''n'' into the cosets ''x'' + R''p'' of the standardly embedded subspace R''p''. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewiselinear, differentiable (of class ''Cr''), or analytic structure then one defines piecewiselinear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class ''Cr'' it is usually understood that ''r'' ≥ 1 (otherwise, ''C''0 is a topological foliation). The number ''p'' (the dimension of the leaves) is called the dimension of the foliation and is called its codimension. In some papers on general relativity by mathematical physicists, t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Neat Submanifold
In differential topology, an area of mathematics, a neat submanifold of a manifold with boundary is a kind of "wellbehaved" submanifold. To define this more precisely, first let :M be a manifold with boundary, and :A be a submanifold of M. Then A is said to be a neat submanifold of M if it meets the following two conditions:. *The boundary of A is a subset of the boundary of M. That is, \partial A \subset \partial M. *Each point of A has a neighborhood within which A's embedding in M is equivalent to the embedding of a hyperplane in a higherdimensional Euclidean space. More formally, A must be covered by charts (U, \phi) of M such that A \cap U = \phi^(\mathbb^m) where m is the dimension For instance, in the category of smooth manifolds, this means that the embedding of A must also be smooth. See also *Local flatness In topology, a branch of mathematics, local flatness is smoothness condition that can be imposed on topological submanifolds. In the category of topological ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Immersion (mathematics)
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential (or pushforward) is everywhere injective. Explicitly, is an immersion if :D_pf : T_p M \to T_N\, is an injective function at every point ''p'' of ''M'' (where ''TpX'' denotes the tangent space of a manifold ''X'' at a point ''p'' in ''X''). Equivalently, ''f'' is an immersion if its derivative has constant rank equal to the dimension of ''M'': :\operatorname\,D_p f = \dim M. The function ''f'' itself need not be injective, only its derivative must be. A related concept is that of an embedding. A smooth embedding is an injective immersion that is also a topological embedding, so that ''M'' is diffeomorphic to its image in ''N''. An immersion is precisely a local embedding – that is, for any point there is a neighbourhood, , of ''x'' such that is an embedding, and conversely a local embedding is an immersion. For infinite dimensional manifolds, this is sometimes ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Differentiable Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Frobenius Theorem (differential Topology)
In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of firstorder homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of ''r'' vector fields mesh into coordinate grids on ''r''dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds. Introduction In its most elementary form, the theorem addresses the problem of finding a maximal set of inde ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Inclusion Map
In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections. Given any morphism f between objects X and Y, if there is an inclusion map into the domain \iota : A \to X, then one can form the restriction f \, \iota of f. In many instances, one can also construct a canonical inclusion into the codomain R \to Y known as the range of f. Applications of inclusion maps Inclusion maps tend to be homomorphisms of algebraic structures; thus, such inclusion maps are embeddings. More precisel ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an ndimensional manifold, or ''nmanifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of ndimensional Euclidean space. Onedimensional manifolds include lines and circles, but not lemniscates. Twodimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of wellunderstood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computergraphics given the need to associate pictures with coordinates (e.g ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structurepreserving map f:X\rightarrow Y. The precise meaning of "structurepreserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structurepreserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topological Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structurepreserving map f:X\rightarrow Y. The precise meaning of "structurepreserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structurepreserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational numbe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Tangent Space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold. Informal description In differential geometry, one can attach to every point x of a differentiable manifold a ''tangent space''—a real vector space that intuitively contains the possible directions in which one can tangentially pass through x . The elements of the tangent space at x are called the ''tangent vectors'' at x . This is a generalization of the notion of a vector, based at a given initial point, in a Euclidean space. The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself. For example, if the given manifold is a 2 sphere, then one can picture the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Wild Arc
In geometric topology, a wild arc is an embedding of the unit interval into 3dimensional space not equivalent to the usual one in the sense that there does not exist an ambient isotopy taking the arc to a straight line segment. found the first example of a wild arc, and found another example called the FoxArtin arc whose complement is not simply connected. See also *Wild knot *Horned sphere The Alexander horned sphere is a pathological object in topology discovered by . Construction The Alexander horned sphere is the particular embedding of a sphere in 3dimensional Euclidean space obtained by the following construction, starting ... Further reading * * * * * {{Topology Geometric topology ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Wild Knot
Wild, wild, wilds or wild may refer to: Common meanings * Wild animal * Wilderness, a wild natural environment * Wildness, the quality of being wild or untamed Art, media and entertainment Film and television * ''Wild'' (2014 film), a 2014 American film from the 2012 book * ''Wild'' (2016 film), a 2016 German film * ''The Wild'', a 2006 Disney 3D animation film * ''Wild'' (TV series), a 2006 American documentary television series * The Wilds (TV series), a 2020 fictional television series Literature * '' Wild: From Lost to Found on the Pacific Crest Trail'' a 2012 nonfiction book by Cheryl Strayed * ''Wild, An elemental Journey'', a 2006 autobiographical book by Jay Griffiths * ''The Wild'' (novel), a 1991 novel by Whitley Strieber * ''The Wild'', a science fiction novel by David Zindell * ''The Wilds'', a 1998 limitededition horror novel by Richard Laymon Music * ''Wild'' (band), a fivepiece classical female group Albums and EPs * ''Wild'' (EP), 2015 * ''Wild'', a 1 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 