Structural Induction
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction. Structural recursion is a recursion method bearing the same relationship to structural induction as ordinary recursion bears to ordinary mathematical induction. Structural induction is used to prove that some proposition ''P''(''x'') holds for all ''x'' of some sort of recursively defined structure, such as formulas, lists, or trees. A wellfounded partial order is defined on the structures ("subformula" for formulas, "sublist" for lists, and "subtree" for trees). The structural induction proof is a proof that the proposition holds for all the minimal structures and that if it holds for the immediate substructures of a certain structure ''S'', then it must hold for ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Proof Method
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or nonexhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols, alon ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Wellfounded Induction
In mathematics, a binary relation ''R'' is called wellfounded (or wellfounded) on a class ''X'' if every nonempty subset ''S'' ⊆ ''X'' has a minimal element with respect to ''R'', that is, an element ''m'' not related by ''s R m'' (for instance, "''s'' is not smaller than ''m''") for any ''s'' ∈ ''S''. In other words, a relation is well founded if :(\forall S \subseteq X)\; \neq \emptyset \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that ''R'' is setlike, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is wellfounded when it contains no infinite descending chains, which can be proved when there is no infinite sequence ''x''0, ''x''1, ''x''2, ... of elements of ''X'' such that ''x''''n''+1 ''R'' ''x''n for every natural number ''n''. In order theory, a partial order is called wellfounded ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematical Induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ... all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for ''n'' = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case ''n'' = ''k'', ''then'' it must also hold for the next case ''n'' = ''k'' + 1. These two steps establish that the statement holds for every natural number ''n''. The base case does not necessarily begin with ''n'' = 0, but often with ''n'' = 1, and possibly with any fixed natural number ''n'' = ''N'', establishing the truth of the statement for all natu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Logic In Computer Science
Logic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas: * Theoretical foundations and analysis * Use of computer technology to aid logicians * Use of concepts from logic for computer applications Theoretical foundations and analysis Logic plays a fundamental role in computer science. Some of the key areas of logic that are particularly significant are computability theory (formerly called recursion theory), modal logic and category theory. The theory of computation is based on concepts defined by logicians and mathematicians such as Alonzo Church and Alan Turing. Church first showed the existence of algorithmically unsolvable problems using his notion of lambdadefinability. Turing gave the first compelling analysis of what can be called a mechanical procedure and Kurt Gödel asserted that he found Turing's analysis "perfect." In addition some other major areas of theor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Rózsa Péter
Rózsa Péter, born Rózsa Politzer, (17 February 1905 – 16 February 1977) was a Hungarian mathematician and logician. She is best known as the "founding mother of recursion theory". Early life and education Péter was born in Budapest, Hungary, as Rózsa Politzer (Hungarian: Politzer Rózsa). She attended Pázmány Péter University (now Eötvös Loránd University), originally studying chemistry but later switching to mathematics. She attended lectures by Lipót Fejér and József Kürschák. While at university, she met László Kalmár; they would collaborate in future years and Kalmár encouraged her to pursue her love of mathematics. After graduating in 1927, Péter could not find a permanent teaching position although she had passed her exams to qualify as a mathematics teacher. Due to the effects of the Great Depression, many university graduates could not find work and Péter began private tutoring. At this time, she also began her graduate studies. Professional ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Loop Invariant
In computer science, a loop invariant is a property of a program loop that is true before (and after) each iteration. It is a logical assertion, sometimes checked within the code by an assertion call. Knowing its invariant(s) is essential in understanding the effect of a loop. In formal program verification, particularly the FloydHoare approach, loop invariants are expressed by formal predicate logic and used to prove properties of loops and by extension algorithms that employ loops (usually correctness properties). The loop invariants will be true on entry into a loop and following each iteration, so that on exit from the loop both the loop invariants and the loop termination condition can be guaranteed. From a programming methodology viewpoint, the loop invariant can be viewed as a more abstract specification of the loop, which characterizes the deeper purpose of the loop beyond the details of this implementation. A survey article covers fundamental algorithms from many a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Initial Algebra
In mathematics, an initial algebra is an initial object in the category of algebras for a given endofunctor . This initiality provides a general framework for induction and recursion. Examples Functor Consider the endofunctor sending to , where is the onepoint (singleton) set, the terminal object in the category. An algebra for this endofunctor is a set (called the ''carrier'' of the algebra) together with a function . Defining such a function amounts to defining a point x\in X and a function . Define : \begin \operatorname \colon 1 &\longrightarrow\mathbf \\ * &\longmapsto 0 \end and : \begin \operatorname\colon \mathbf&\longrightarrow\mathbf \\ n &\longmapsto n + 1. \end Then the set of natural numbers together with the function is an initial algebra. The initiality (the universal property for this case) is not hard to establish; the unique homomorphism to an arbitrary algebra , for an element of and a function on , is the function sending the natu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Coinduction
In computer science, coinduction is a technique for defining and proving properties of systems of concurrent interacting objects. Coinduction is the mathematical dual to structural induction. Coinductively defined types are known as codata and are typically infinite data structures, such as streams. As a definition or specification, coinduction describes how an object may be "observed", "broken down" or "destructed" into simpler objects. As a proof technique, it may be used to show that an equation is satisfied by all possible implementations of such a specification. To generate and manipulate codata, one typically uses corecursive functions, in conjunction with lazy evaluation. Informally, rather than defining a function by patternmatching on each of the inductive constructors, one defines each of the "destructors" or "observers" over the function result. In programming, cologic programming (coLP for brevity) "is a natural generalization of logic programming and coinduct ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Binary Tree
In computer science, a binary tree is a kary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (nonempty) binary tree is a tuple (''L'', ''S'', ''R''), where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton set containing the root. Some authors allow the binary tree to be the empty set as well. From a graph theory perspective, binary (and Kary) trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence—a term which appears in some very old programming books, before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than a directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, bu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Wellordering Principle
In mathematics, the wellordering principle states that every nonempty set of positive integers contains a least element. In other words, the set of positive integers is wellordered by its "natural" or "magnitude" order in which x precedes y if and only if y is either x or the sum of x and some positive integer (other orderings include the ordering 2, 4, 6, ...; and 1, 3, 5, ...). The phrase "wellordering principle" is sometimes taken to be synonymous with the "wellordering theorem". On other occasions it is understood to be the proposition that the set of integers \ contains a wellordered subset, called the natural numbers, in which every nonempty subset contains a least element. Properties Depending on the framework in which the natural numbers are introduced, this (second order) property of the set of natural numbers is either an axiom or a provable theorem. For example: * In Peano arithmetic, secondorder arithmetic and related systems, and indeed in most (not necessari ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 