Secant Method
In numerical analysis, the secant method is a rootfinding algorithm that uses a succession of roots of secant lines to better approximate a root of a function ''f''. The secant method can be thought of as a finitedifference approximation of Newton's method. However, the secant method predates Newton's method by over 3000 years. The method For finding a zero of a function , the secant method is defined by the recurrence relation. : x_n = x_  f(x_) \frac = \frac. As can be seen from this formula, two initial values and are required. Ideally, they should be chosen close to the desired zero. Derivation of the method Starting with initial values and , we construct a line through the points and , as shown in the picture above. In slope–intercept form, the equation of this line is :y = \frac(x  x_1) + f(x_1). The root of this linear function, that is the value of such that is :x = x_1  f(x_1) \frac. We then use this new value of as and repeat the process, u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Secant Method
In numerical analysis, the secant method is a rootfinding algorithm that uses a succession of roots of secant lines to better approximate a root of a function ''f''. The secant method can be thought of as a finitedifference approximation of Newton's method. However, the secant method predates Newton's method by over 3000 years. The method For finding a zero of a function , the secant method is defined by the recurrence relation. : x_n = x_  f(x_) \frac = \frac. As can be seen from this formula, two initial values and are required. Ideally, they should be chosen close to the desired zero. Derivation of the method Starting with initial values and , we construct a line through the points and , as shown in the picture above. In slope–intercept form, the equation of this line is :y = \frac(x  x_1) + f(x_1). The root of this linear function, that is the value of such that is :x = x_1  f(x_1) \frac. We then use this new value of as and repeat the process, u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bisection Method
In mathematics, the bisection method is a rootfinding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods. The method is also called the interval halving method, the binary search method, or the dichotomy method. For polynomials, more elaborate methods exist for testing the existence of a root in an interval (Descartes' rule of signs, Sturm's theorem, Budan's theorem). They allow extending the bisection method into efficient algorithms for finding all real roots of a polynomial; see Realroot isolation. The method The ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

False Position Method
In mathematics, the ''regula falsi'', method of false position, or false position method is a very old method for solving an equation with one unknown; this method, in modified form, is still in use. In simple terms, the method is the trial and error technique of using test ("false") values for the variable and then adjusting the test value according to the outcome. This is sometimes also referred to as "guess and check". Versions of the method predate the advent of algebra and the use of equations. As an example, consider problem 26 in the Rhind papyrus, which asks for a solution of (written in modern notation) the equation . This is solved by false position. First, guess that to obtain, on the left, . This guess is a good choice since it produces an integer value. However, 4 is not the solution of the original equation, as it gives a value which is three times too small. To compensate, multiply (currently set to 4) by 3 and substitute again to get , verifying that the solution ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Python (programming Language)
Python is a highlevel, generalpurpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamicallytyped and garbagecollected. It supports multiple programming paradigms, including structured (particularly procedural), objectoriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000 and introduced new features such as list comprehensions, cycledetecting garbage collection, reference counting, and Unicode support. Python 3.0, released in 2008, was a major revision that is not completely backwardcompatible with earlier versions. Python 2 was discontinued with version 2.7.18 in 2020. Python consistently ranks as ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Secant Method Example Code Result
Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine * the secant method, a rootfinding algorithm in numerical analysis, based on secant lines to graphs of functions * a secant ogive Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciproc ... in nose cone design {{mathdab sr:Секанс ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Broyden's Method
In numerical analysis, Broyden's method is a quasiNewton method QuasiNewton methods are methods used to either find zeroes or local maxima and minima of functions, as an alternative to Newton's method. They can be used if the Jacobian or Hessian is unavailable or is too expensive to compute at every iteration. ... for rootfinding algorithm, finding roots in variables. It was originally described by Charles George Broyden, C. G. Broyden in 1965. Newton's method for solving uses the Jacobian matrix and determinant, Jacobian matrix, , at every iteration. However, computing this Jacobian is a difficult and expensive operation. The idea behind Broyden's method is to compute the whole Jacobian only at the first iteration and to do rankone updates at other iterations. In 1979 Gay proved that when Broyden's method is applied to a linear system of size , it terminates in steps, although like all quasiNewton methods, it may not converge for nonlinear systems. Description of the me ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

QuasiNewton Method
QuasiNewton methods are methods used to either find zeroes or local maxima and minima of functions, as an alternative to Newton's method. They can be used if the Jacobian or Hessian is unavailable or is too expensive to compute at every iteration. The "full" Newton's method requires the Jacobian in order to search for zeros, or the Hessian for finding extrema. Search for zeros: root finding Newton's method to find zeroes of a function g of multiple variables is given by x_ = x_n  _g(x_n) g(x_n), where _g(x_n) is the left inverse of the Jacobian matrix J_g(x_n) of g evaluated for x_n. Strictly speaking, any method that replaces the exact Jacobian J_g(x_n) with an approximation is a quasiNewton method. For instance, the chord method (where J_g(x_n) is replaced by J_g(x_0) for all iterations) is a simple example. The methods given below for optimization refer to an important subclass of quasiNewton methods, secant methods. Using methods developed to find extrema in order to fi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Illinois Method
In mathematics, the ''regula falsi'', method of false position, or false position method is a very old method for solving an equation with one unknown; this method, in modified form, is still in use. In simple terms, the method is the trial and error technique of using test ("false") values for the variable and then adjusting the test value according to the outcome. This is sometimes also referred to as "guess and check". Versions of the method predate the advent of algebra and the use of equations. As an example, consider problem 26 in the Rhind papyrus, which asks for a solution of (written in modern notation) the equation . This is solved by false position. First, guess that to obtain, on the left, . This guess is a good choice since it produces an integer value. However, 4 is not the solution of the original equation, as it gives a value which is three times too small. To compensate, multiply (currently set to 4) by 3 and substitute again to get , verifying that the solution ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Regula Falsi
In mathematics, the ''regula falsi'', method of false position, or false position method is a very old method for solving an equation with one unknown; this method, in modified form, is still in use. In simple terms, the method is the trial and error technique of using test ("false") values for the variable and then adjusting the test value according to the outcome. This is sometimes also referred to as "guess and check". Versions of the method predate the advent of algebra and the use of equations. As an example, consider problem 26 in the Rhind papyrus, which asks for a solution of (written in modern notation) the equation . This is solved by false position. First, guess that to obtain, on the left, . This guess is a good choice since it produces an integer value. However, 4 is not the solution of the original equation, as it gives a value which is three times too small. To compensate, multiply (currently set to 4) by 3 and substitute again to get , verifying that the solution ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

False Position Method
In mathematics, the ''regula falsi'', method of false position, or false position method is a very old method for solving an equation with one unknown; this method, in modified form, is still in use. In simple terms, the method is the trial and error technique of using test ("false") values for the variable and then adjusting the test value according to the outcome. This is sometimes also referred to as "guess and check". Versions of the method predate the advent of algebra and the use of equations. As an example, consider problem 26 in the Rhind papyrus, which asks for a solution of (written in modern notation) the equation . This is solved by false position. First, guess that to obtain, on the left, . This guess is a good choice since it produces an integer value. However, 4 is not the solution of the original equation, as it gives a value which is three times too small. To compensate, multiply (currently set to 4) by 3 and substitute again to get , verifying that the solution ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quadratic Convergence
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solutio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 