Resistor
   HOME
*



picture info

Resistor
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for heat, light, humidity, force, or chemical activity. Resistors are common elements of electrical networks and electronic circuits and are ubiquitous in electronic equipment. Practical resistors as discrete components can be composed of various compounds and forms. Resisto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




IEC 60062
The RKM code, also referred to as "letter and numeral code for resistance and capacitance values and tolerances", "letter and digit code for resistance and capacitance values and tolerances", or informally as "R notation" is a notation to specify resistor and capacitor values defined in the international standard IEC 60062 (formerly IEC 62) since 1952. It is also adopted by various other standards including DIN 40825 (1973), BS 1852 (1975), IS 8186 (1976) and EN 60062 (1993). The updated IEC 60062:2016, amended in 2019, comprises the most recent release of the standard. Overview Originally meant also as part marking code, this shorthand notation is widely used in electrical engineering to denote the values of resistors and capacitors in circuit diagrams and in the production of electronic circuits (for example in bills of material and in silk screens). This method avoids overlooking the decimal separator, which may not be rendered reliably on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RKM Code
The RKM code, also referred to as "letter and numeral code for resistance and capacitance values and tolerances", "letter and digit code for resistance and capacitance values and tolerances", or informally as "R notation" is a notation to specify resistor and capacitor values defined in the international standard IEC 60062 (formerly IEC 62) since 1952. It is also adopted by various other standards including DIN 40825 (1973), BS 1852 (1975), IS 8186 (1976) and EN 60062 (1993). The updated IEC 60062:2016, amended in 2019, comprises the most recent release of the standard. Overview Originally meant also as part marking code, this shorthand notation is widely used in electrical engineering to denote the values of resistors and capacitors in circuit diagrams and in the production of electronic circuits (for example in bills of material and in silk screens). This method avoids overlooking the decimal separator, which may not be rendered reliably on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IEEE 315-1975 (1993)
An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions. Standards for symbols The graphic symbols used for electrical components in circuit diagrams are covered by national and international standards, in particular: * IEC 60617 (also known as BS 3939). * There is also IEC 61131-3 – for ladder-logic symbols. * JIC JIC (Joint Industrial Council) symbols as approved and adopted by the NMTBA (National Machine Tool Builders Association). They have been extracted from the Appendix of the NMTBA Specification EGPl-1967. * ANSI Y32.2-1975 (also known aIEEE Std 315-1975or CSA Z99-1975). * IEEE Std 91/91a: graphic symbols for logic functions (used in digital e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE 315-1975 (1993) 2
An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions. Standards for symbols The graphic symbols used for electrical components in circuit diagrams are covered by national and international standards, in particular: * IEC 60617 (also known as BS 3939). * There is also IEC 61131-3 – for ladder-logic symbols. * JIC JIC (Joint Industrial Council) symbols as approved and adopted by the NMTBA (National Machine Tool Builders Association). They have been extracted from the Appendix of the NMTBA Specification EGPl-1967. * ANSI Y32.2-1975 (also known aIEEE Std 315-1975or CSA Z99-1975). * IEEE Std 91/91a: graphic symbols for logic functions (used in digital e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electronic Component
An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as compone ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Resistance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ). The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather than intens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Resistance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ). The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather than intens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voltage Divider
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (''V''out) that is a fraction of its input voltage (''V''in). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them. Resistor voltage dividers are commonly used to create reference voltages, or to reduce the magnitude of a voltage so it can be measured, and may also be used as signal attenuators at low frequencies. For direct current and relatively low frequencies, a voltage divider may be sufficiently accurate if made only of resistors; where frequency response over a wide range is required (such as in an oscilloscope probe), a voltage divider may have capacitive elements added to compensate load capacitance. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ohm's Law
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship: :I = \frac, where is the current through the conductor, ''V'' is the voltage measured ''across'' the conductor and ''R'' is the resistance of the conductor. More specifically, Ohm's law states that the ''R'' in this relation is constant, independent of the current. If the resistance is not constant, the previous equation cannot be called ''Ohm's law'', but it can still be used as a definition of static/DC resistance. Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current. However some materials do not obey Ohm's law; these are called non-ohmic. The law was named after t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Passivity (engineering)
Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use ''passivity'' to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use ''passivity'' to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term ''passive'' is ambiguous. An electronic circuit consisting entirely of passive components is called a passive circuit, and has the same properties as a passive component. If a component is ''not'' passive, then it is an active component. Thermodynamic passivity In control systems and circuit network theory, a passive component or circuit is one that consumes energy, but does not produce energy. Under this methodology, voltage and current sources are considered active, while resistors, capacitors, inductors, transistors, tunnel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Passivity (engineering)
Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use ''passivity'' to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use ''passivity'' to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term ''passive'' is ambiguous. An electronic circuit consisting entirely of passive components is called a passive circuit, and has the same properties as a passive component. If a component is ''not'' passive, then it is an active component. Thermodynamic passivity In control systems and circuit network theory, a passive component or circuit is one that consumes energy, but does not produce energy. Under this methodology, voltage and current sources are considered active, while resistors, capacitors, inductors, transistors, tunnel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schematic Diagram
A schematic, or schematic diagram, is a designed representation of the elements of a system using abstract, graphic symbols rather than realistic pictures. A schematic usually omits all details that are not relevant to the key information the schematic is intended to convey, and may include oversimplified elements in order to make this essential meaning easier to grasp, as well as additional organization of the information. For example, a subway map intended for passengers may represent a subway station with a dot. The dot is not intended to resemble the actual station at all but aims to give the viewer information without unnecessary visual clutter. A schematic diagram of a chemical process uses symbols in place of detailed representations of the vessels, piping, valves, pumps, and other equipment that compose the system, thus emphasizing the functions of the individual elements and the interconnections among them and suppresses their physical details. In an electronic circuit d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]