Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily twosided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maximal le ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right Rmodules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is leftright symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Definitio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finitedimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generating ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Krull's Theorem
In mathematics, and more specifically in ring theory, Krull's theorem, named after Wolfgang Krull, asserts that a nonzero ring has at least one maximal ideal. The theorem was proved in 1929 by Krull, who used transfinite induction. The theorem admits a simple proof using Zorn's lemma, and in fact is equivalent to Zorn's lemma, which in turn is equivalent to the axiom of choice. Variants * For noncommutative rings, the analogues for maximal left ideals and maximal right ideals also hold. * For pseudorings, the theorem holds for regular ideals. * A slightly stronger (but equivalent) result, which can be proved in a similar fashion, is as follows: :::Let ''R'' be a ring, and let ''I'' be a proper ideal of ''R''. Then there is a maximal ideal of ''R'' containing ''I''. :This result implies the original theorem, by taking ''I'' to be the zero ideal (0). Conversely, applying the original theorem to ''R''/''I'' leads to this result. :To prove the stronger result directly, consi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is a local ring and ''m'' is then its unique maximal ideal. This construction is applied in algebraic geometry, where to every point ''x'' of a scheme ''X'' one associates its residue field ''k''(''x''). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point. Definition Suppose that ''R'' is a commutative local ring, with maximal ideal ''m''. Then the residue field is the quotient ring ''R''/''m''. Now suppose that ''X'' is a scheme and ''x'' is a point of ''X''. By the definition of scheme, we may find an affine neighbourhood ''U'' = Spec(''A''), with ''A'' some commutative ring. Considered in the neighbourhood ''U'', the point ''x'' correspond ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraically Closed Field
In mathematics, a field is algebraically closed if every nonconstant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot. Principal ideal domains are thus mathematical objects that behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form . Principal ideal domains are noetherian, they are integra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain R ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Principal Ideal
In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset P generated by a single element x \in P, which is to say the set of all elements less than or equal to x in P. The remainder of this article addresses the ringtheoretic concept. Definitions * a ''left principal ideal'' of R is a subset of R given by Ra = \ for some element a, * a ''right principal ideal'' of R is a subset of R given by aR = \ for some element a, * a ''twosided principal ideal'' of R is a subset of R given by RaR = \ for some element a, namely, the set of all finite sums of elements of the form ras. While this definition for twosided principal ideal may seem more complicated than the others, it is necessary to ensure that the ideal remains closed under addition. If R is a commuta ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Minimal Ideal
In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring ''R'' is a nonzero right ideal which contains no other nonzero right ideal. Likewise, a minimal left ideal is a nonzero left ideal of ''R'' containing no other nonzero left ideals of ''R'', and a minimal ideal of ''R'' is a nonzero ideal containing no other nonzero twosided ideal of ''R'' . In other words, minimal right ideals are minimal elements of the poset of nonzero right ideals of ''R'' ordered by inclusion. The reader is cautioned that outside of this context, some posets of ideals may admit the zero ideal, and so the zero ideal could potentially be a minimal element in that poset. This is the case for the poset of prime ideals of a ring, which may include the zero ideal as a minimal prime ideal. Definition The definition of a minimal right ideal ''N'' of a ring ''R'' is equivalent to the following conditions: *''N'' is nonzero and if ''K'' is a right ideal of ''R'' with , then either ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 