Tietze Extension Theorem
In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem) states that continuous functions on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary. Formal statement If X is a normal space and f : A \to \R is a continuous map from a closed subset A of X into the real numbers \R carrying the standard topology, then there exists a of f to X; that is, there exists a map F : X \to \R continuous on all of X with F(a) = f(a) for all a \in A. Moreover, F may be chosen such that \sup \ ~=~ \sup \, that is, if f is bounded then F may be chosen to be bounded (with the same bound as f). History L. E. J. Brouwer and Henri Lebesgue proved a special case of the theorem, when X is a finitedimensional real vector space. Heinrich Tietze extended it to all metric spaces, and Pavel Urysohn proved the theorem as stated here, for normal topological spaces. Equivalent statements This the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Urysohn's Lemma
In topology, Urysohn's lemma is a lemma that states that a topological space is normal if and only if any two disjoint closed subsets can be separated by a continuous function. Section 15. Urysohn's lemma is commonly used to construct continuous functions with various properties on normal spaces. It is widely applicable since all metric spaces and all compact Hausdorff spaces are normal. The lemma is generalised by (and usually used in the proof of) the Tietze extension theorem. The lemma is named after the mathematician Pavel Samuilovich Urysohn. Discussion Two subsets A and B of a topological space X are said to be separated by neighbourhoods if there are neighbourhoods U of A and V of B that are disjoint. In particular A and B are necessarily disjoint. Two plain subsets A and B are said to be separated by a function if there exists a continuous function f : X \to , 1/math> from X into the unit interval , 1/math> such that f(a) = 0 for all a \in A and f(b) = 1 for all b \ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mizar System
The Mizar system consists of a formal language for writing mathematical definitions and proofs, a proof assistant, which is able to mechanically check proofs written in this language, and a library of formalized mathematics, which can be used in the proof of new theorems. The system is maintained and developed by the Mizar Project, formerly under the direction of its founder Andrzej Trybulec. In 2009 the Mizar Mathematical Library was the largest coherent body of strictly formalized mathematics in existence. History The Mizar Project was started around 1973 by Andrzej Trybulec as an attempt to reconstruct mathematical vernacular so it can be checked by a computer. Its current goal, apart from the continual development of the Mizar System, is the collaborative creation of a large library of formally verified proofs, covering most of the core of modern mathematics. This is in line with the influential QED manifesto. Currently the project is developed and maintained by researc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. Weisstein continuously improved the notes and accepted corrections and comments from online readers. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CDROM form, titled "CRC Concise Encyclopedia of Mathematic ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Eric W
The given name Eric, Erich, Erikk, Erik, Erick, or Eirik is derived from the Old Norse name ''Eiríkr'' (or ''Eríkr'' in Old East Norse due to monophthongization). The first element, ''ei'' may be derived from the older ProtoNorse ''* aina(z)'', meaning "one, alone, unique", ''as in the form'' ''Æ∆inrikr'' explicitly, but it could also be from ''* aiwa(z)'' "everlasting, eternity", as in the Gothic form ''Euric''. The second element '' ríkr'' stems either from ProtoGermanic ''* ríks'' "king, ruler" (cf. Gothic ''reiks'') or the therefrom derived ''* ríkijaz'' "kingly, powerful, rich, prince"; from the common ProtoIndoEuropean root * h₃rḗǵs. The name is thus usually taken to mean "sole ruler, autocrat" or "eternal ruler, ever powerful". ''Eric'' used in the sense of a proper noun meaning "one ruler" may be the origin of ''Eriksgata'', and if so it would have meant "one ruler's journey". The tour was the medieval Swedish king's journey, when newly elected, to s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Riesz Space
In mathematics, a Riesz space, latticeordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Sur la décomposition des opérations fonctionelles linéaires''. Riesz spaces have wideranging applications. They are important in measure theory, in that important results are special cases of results for Riesz spaces. For example, the Radon–Nikodym theorem follows as a special case of the Freudenthal spectral theorem. Riesz spaces have also seen application in mathematical economics through the work of GreekAmerican economist and mathematician Charalambos D. Aliprantis. Definition Preliminaries If X is an ordered vector space (which by definition is a vector space over the reals) and if S is a subset of X then an element b \in X is an upper bound (resp. lower bound) of S if s \leq b (resp. s \geq b) for all s \in S. An element ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lower Semicontinuous
In mathematical analysis, semicontinuity (or semicontinuity) is a property of extended realvalued functions that is weaker than continuity. An extended realvalued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right)  c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. Definitions Assume throughout that X is a topological space and f:X\to\overline is a function with values in the extended real numbers \overline=\R \cup \ = ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Upper Semicontinuous
In mathematical analysis, semicontinuity (or semicontinuity) is a property of extended realvalued functions that is weaker than continuity. An extended realvalued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right)  c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. Definitions Assume throughout that X is a topological space and f:X\to\overline is a function with values in the extended real numbers \overline=\R \cup \ = ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hölder Condition
In mathematics, a real or complexvalued function ''f'' on ''d''dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants ''C'', α > 0, such that : , f(x)  f(y) , \leq C\, x  y\, ^ for all ''x'' and ''y'' in the domain of ''f''. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the ''exponent'' of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder. We have the following chain of strict inclusions for functions over a closed and bounded nontrivial interval of the real line: : Continuously differentiable ⊂ Lipschitz continuous ⊂ αHölder continuous ⊂ uniformly continuous ⊂ continuous, where ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixedpoint theorem. We have the following chain of strict inclus ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Deformation Retract
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of ''continuously shrinking'' a space into a subspace. An absolute neighborhood retract (ANR) is a particularly wellbehaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex. Definitions Retract Let ''X'' be a topological space and ''A'' a subspace of ''X''. Then a continuous map :r\colon X \to A is a retraction if the restriction of ''r'' to ''A'' is the identity map on ''A''; that is, r(a) = a for all ''a'' in ''A''. Equivalently, denoting by :\iota\colon A \hookrightarrow X the inclusion, a retraction is a continuous map ''r'' such that :r \circ \iota = \operatorname_A, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 