Chakravala Method
   HOME
*





Chakravala Method
The ''chakravala'' method ( sa, चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation. It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE)Hoiberg & Ramchandani – Students' Britannica India: Bhaskaracharya II, page 200Kumar, page 23 although some attribute it to Jayadeva (c. 950 ~ 1000 CE).Plofker, page 474 Jayadeva pointed out that Brahmagupta's approach to solving equations of this type could be generalized, and he then described this general method, which was later refined by Bhāskara II in his ''Bijaganita'' treatise. He called it the Chakravala method: ''chakra'' meaning "wheel" in Sanskrit, a reference to the cyclic nature of the algorithm.Goonatilake, page 127 – 128 C.-O. Selenius held that no European performances at the time of Bhāskara, nor much later, exceeded its marvellous height of mathematical complexity. This method is also known as the cyclic method and contains traces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continued Fraction
In mathematics, a continued fraction is an expression (mathematics), expression obtained through an iterative process of representing a number as the sum of its integer part and the multiplicative inverse, reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression (mathematics), infinite expression. In either case, all integers in the sequence, other than the first, must be positive number, positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or function (mathematics), functions are used in place of one or more of the numerat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equations
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-European Roots Of Mathematics
The Non-European Unity Movement (NEUM) is a Trotskyist organisation formed in South Africa in 1943. It had links to the Workers Party of South Africa (WPSA), the first countrywide Trotskyist organisation, and was initially conceived as a broad protest front. It proposed a 10 Point Programme of radical reforms. It stressed non-racialism, meaning that it rejected race-based organising (and the concept of race itself), unlike the main nationalist groups of the time, was highly critical of the South African Communist Party and the African National Congress, and made a principle of non-collaboration with the apartheid regime and its allies The movement developed a substantial influence in the Cape Province, including Pondoland, and had some role in the 1950-1961 Pondoland peasant revolt, but split in 1957. The faction around Isaac Bangani Tabata formed a new African Peoples' Democratic Union of Southern Africa (APDUSA) in 1961, and the Unity Movement of South Africa (UMSA) in exile in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Florian Cajori
Florian Cajori (February 28, 1859 – August 14 or 15, 1930) was a Swiss-American historian of mathematics. Biography Florian Cajori was born in Zillis, Switzerland, as the son of Georg Cajori and Catherine Camenisch. He attended schools first in Zillis and later in Chur. In 1875, Florian Cajori emigrated to the United States at the age of sixteen, and attended the State Normal school in Whitewater, Wisconsin. After graduating in 1878, he taught in a country school, and then later began studying mathematics at University of Wisconsin–Madison. In 1883, Cajori received both his bachelor's and master's degrees from the University of Wisconsin–Madison, briefly attended Johns Hopkins University for 8 months in between degrees. He taught for a few years at Tulane University, before being appointed as professor of applied mathematics there in 1887. He was then driven north by tuberculosis. He founded the Colorado College Scientific Society and taught at Colorado College where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bhaskara's Lemma
''Bhaskara's'' Lemma is an identity used as a lemma during the chakravala method The ''chakravala'' method ( sa, चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation. It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE)Hoiberg & Ramchandani .... It states that: :\, Nx^2 + k = y^2\implies \,N\left(\frac\right)^2 + \frac = \left(\frac\right)^2 for integers m,\, x,\, y,\, N, and non-zero integer k. Proof The proof follows from simple algebraic manipulations as follows: multiply both sides of the equation by m^2-N, add N^2x^2+2Nmxy+Ny^2, factor, and divide by k^2. :\, Nx^2 + k = y^2\implies Nm^2x^2-N^2x^2+k(m^2-N) = m^2y^2-Ny^2 :\implies Nm^2x^2+2Nmxy+Ny^2+k(m^2-N) = m^2y^2+2Nmxy+N^2x^2 :\implies N(mx+y)^2+k(m^2-N) = (my+Nx)^2 :\implies \,N\left(\frac\right)^2 + \frac = \left(\frac\right)^2. So long as neither k nor m^2-N are zero, the implication goes in both directions. (The lemma holds fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brahmagupta's Identity
In algebra, Brahmagupta's identity says that, for given n, the product of two numbers of the form a^2+nb^2 is itself a number of that form. In other words, the set of such numbers is closed under multiplication. Specifically: :\begin \left(a^2 + nb^2\right)\left(c^2 + nd^2\right) & = \left(ac-nbd\right)^2 + n\left(ad+bc\right)^2 & & & (1) \\ & = \left(ac+nbd\right)^2 + n\left(ad-bc\right)^2, & & & (2) \end Both (1) and (2) can be verified by expanding each side of the equation. Also, (2) can be obtained from (1), or (1) from (2), by changing ''b'' to −''b''. This identity holds in both the ring of integers and the ring of rational numbers, and more generally in any commutative ring. History The identity is a generalization of the so-called Fibonacci identity (where ''n''=1) which is actually found in Diophantus' '' Arithmetica'' (III, 19). That identity was rediscovered by Brahmagupta (598–668), an Indian mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermann Hankel
Hermann Hankel (14 February 1839 – 29 August 1873) was a German mathematician. Having worked on mathematical analysis during his career, he is best known for introducing the Hankel transform and the Hankel matrix. Biography Hankel was born on 14 February 1839 in Halle, Germany. His father, Wilhelm Gottlieb Hankel, was a physicist. Hankel studied at Nicolai Gymnasium in Leipzig before entering Leipzig University in 1857, where he studied with Moritz Drobisch, August Ferdinand Möbius and his father. In 1860, he started studying at University of Göttingen, where he acquired an interest in function theory under the tutelage of Bernhard Riemann. Following the publication of an award winning article, he proceeded to study under Karl Weierstrass and Leopold Kronecker in Berlin. He received his doctorate in 1862 at Leipzig University. Receiving his teaching qualifications a year after, he was promoted to an associate professor at Leipzig University in 1867. At the same year, he rece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Root
In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'', which is denoted by \sqrt, where the symbol \sqrt is called the ''radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case 9. For nonnegative , the principal square root can also be written in exponent notation, as . Every positive number has two square roots: \sqrt, which is positive, and -\sqrt, which is negative. The two roots can be written more concisely using the ± sign as \plusmn\sqrt. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]