HOME TheInfoList
Providing Lists of Related Topics to Help You Find Great Stuff







picture info

Compression Ratio
In a combustion engine, the static compression ratio is calculated based on the relative volumes of the combustion chamber and the cylinder; that is, the ratio between the volume of the cylinder and combustion chamber when the piston is at the bottom of its stroke, and the volume of the combustion chamber when the piston is at the top of its stroke.[1] The dynamic compression ratio is a more advanced calculation which also takes into account gasses entering and exiting the cylinder during the compression phase. The compression ratio is a fundamental specification for combustion engines. A high compression ratio is desirable because it allows an engine to extract more mechanical energy from a given mass of air–fuel mixture due to its higher thermal efficiency
[...More Info...]      
[...Related Items...]



picture info

Combustor
A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high pressure air by the compression system. The combustor then heats this air at constant pressure. After heating, air passes from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the air is directly fed to the nozzle. A combustor must contain and maintain stable combustion despite very high air flow rates. To do so combustors are carefully designed to first mix and ignite the air and fuel, and then mix in more air to complete the combustion process. Early gas turbine engines used a single chamber known as a can type combustor. Today three main configurations exist: can, annular and cannular (also referred to as can-annular tubo-annular)
[...More Info...]      
[...Related Items...]



picture info

Annular Combustor
A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high pressure air by the compression system. The combustor then heats this air at constant pressure. After heating, air passes from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the air is directly fed to the nozzle. A combustor must contain and maintain stable combustion despite very high air flow rates. To do so combustors are carefully designed to first mix and ignite the air and fuel, and then mix in more air to complete the combustion process. Early gas turbine engines used a single chamber known as a can type combustor. Today three main configurations exist: can, annular and cannular (also referred to as can-annular tubo-annular)
[...More Info...]      
[...Related Items...]



Rpm
Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or with the notation min−1) is the number of turns in one minute. It is a unit of rotational speed or the frequency of rotation around a fixed axis. Thus a disc rotating at 60 rpm is said to be rotating at either 2π rad/s or 1 Hz, where the former measures the angular velocity and the latter reflects the number of revolutions per second. If the non-SI unit rpm is considered a unit of frequency, then 1 rpm = 1/60 Hz. If it instead is considered a unit of angular velocity and the word "revolution" is considered to mean 2π radians, then 1 rpm = 2π/60 rad/s.

Examples

picture info

Turbojet
The turbojet is an airbreathing jet engine, typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet, a compressor, a combustion chamber, and a turbine (that drives the compressor). The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust.[1] Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s. While the turbojet was the first form of gas turbine powerplant for aviation, it has largely been replaced in use by other developments of the original concept
[...More Info...]      
[...Related Items...]