HOME
*



picture info

Superellipse
A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but a different overall shape. In the Cartesian coordinate system, the set of all points (x,y) on the curve satisfy the equation :\left, \frac\^n\!\! + \left, \frac\^n\! = 1, where n,a and b are positive numbers, and the vertical bars around a number indicate the absolute value of the number. Specific cases This formula defines a closed curve contained in the rectangle −''a'' ≤ ''x'' ≤ +''a'' and −''b'' ≤ ''y'' ≤ +''b''. The parameters ''a'' and ''b'' are called the ''semi-diameters'' of the curve. The overall shape of the curve is determined by the value of the exponent ''n'', as shown in the following table: If ''n''  2, a hyperellipse. When ''n'' ≥ 1 and ''a'' = ''b'', the superellipse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superellipse
A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but a different overall shape. In the Cartesian coordinate system, the set of all points (x,y) on the curve satisfy the equation :\left, \frac\^n\!\! + \left, \frac\^n\! = 1, where n,a and b are positive numbers, and the vertical bars around a number indicate the absolute value of the number. Specific cases This formula defines a closed curve contained in the rectangle −''a'' ≤ ''x'' ≤ +''a'' and −''b'' ≤ ''y'' ≤ +''b''. The parameters ''a'' and ''b'' are called the ''semi-diameters'' of the curve. The overall shape of the curve is determined by the value of the exponent ''n'', as shown in the following table: If ''n''  2, a hyperellipse. When ''n'' ≥ 1 and ''a'' = ''b'', the superellipse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superellipse Chamfered Square
A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but a different overall shape. In the Cartesian coordinate system, the set of all points (x,y) on the curve satisfy the equation :\left, \frac\^n\!\! + \left, \frac\^n\! = 1, where n,a and b are positive numbers, and the vertical bars around a number indicate the absolute value of the number. Specific cases This formula defines a closed curve contained in the rectangle −''a'' ≤ ''x'' ≤ +''a'' and −''b'' ≤ ''y'' ≤ +''b''. The parameters ''a'' and ''b'' are called the ''semi-diameters'' of the curve. The overall shape of the curve is determined by the value of the exponent ''n'', as shown in the following table: If ''n''  2, a hyperellipse. When ''n'' ≥ 1 and ''a'' = ''b'', the superell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superellipse Rounded Diamond
A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but a different overall shape. In the Cartesian coordinate system, the set of all points (x,y) on the curve satisfy the equation :\left, \frac\^n\!\! + \left, \frac\^n\! = 1, where n,a and b are positive numbers, and the vertical bars around a number indicate the absolute value of the number. Specific cases This formula defines a closed curve contained in the rectangle −''a'' ≤ ''x'' ≤ +''a'' and −''b'' ≤ ''y'' ≤ +''b''. The parameters ''a'' and ''b'' are called the ''semi-diameters'' of the curve. The overall shape of the curve is determined by the value of the exponent ''n'', as shown in the following table: If ''n''  2, a hyperellipse. When ''n'' ≥ 1 and ''a'' = ''b'', the superell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superellipse Star
A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but a different overall shape. In the Cartesian coordinate system, the set of all points (x,y) on the curve satisfy the equation :\left, \frac\^n\!\! + \left, \frac\^n\! = 1, where n,a and b are positive numbers, and the vertical bars around a number indicate the absolute value of the number. Specific cases This formula defines a closed curve contained in the rectangle −''a'' ≤ ''x'' ≤ +''a'' and −''b'' ≤ ''y'' ≤ +''b''. The parameters ''a'' and ''b'' are called the ''semi-diameters'' of the curve. The overall shape of the curve is determined by the value of the exponent ''n'', as shown in the following table: If ''n''  2, a hyperellipse. When ''n'' ≥ 1 and ''a'' = ''b'', the superell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with r=0 (a single point) is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted. Specifically, a circle is a simple closed curve that divides the plane into two regions: an interior and an exterior. In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, or to the whole figure including its interior; in strict technical usage, the circle is only the boundary and the whole figure is called a '' disc''. A circle may also be defined as a specia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rhombus
In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle (which some authors call a calisson after the French sweet – also see Polyiamond), and the latter sometimes refers specifically to a rhombus with a 45° angle. Every rhombus is simple (non-self-intersecting), and is a special case of a parallelogram and a kite. A rhombus with right angles is a square. Etymology The word "rhombus" comes from grc, ῥόμβος, rhombos, meaning something that spins, which derives from the verb , romanized: , meaning "to turn round and round." The word was used both by E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astroid
In mathematics, an astroid is a particular type of roulette curve: a hypocycloid with four cusps. Specifically, it is the locus of a point on a circle as it rolls inside a fixed circle with four times the radius. By double generation, it is also the locus of a point on a circle as it rolls inside a fixed circle with 4/3 times the radius. It can also be defined as the envelope of a line segment of fixed length that moves while keeping an end point on each of the axes. It is therefore the envelope of the moving bar in the Trammel of Archimedes. Its modern name comes from the Greek word for "star". It was proposed, originally in the form of "Astrois", by Joseph Johann von Littrow in 1838. The curve had a variety of names, including tetracuspid (still used), cubocycloid, and paracycle. It is nearly identical in form to the evolute of an ellipse. Equations If the radius of the fixed circle is ''a'' then the equation is given by :x^ + y^ = a^. \, This implies that an astroid is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "\,\leq\," in the homogeneity axiom. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gabriel Lamé
Gabriel Lamé (22 July 1795 – 1 May 1870) was a French mathematician who contributed to the theory of partial differential equations by the use of curvilinear coordinates, and the mathematical theory of elasticity (for which linear elasticity and finite strain theory elaborate the mathematical abstractions). Biography Lamé was born in Tours, in today's ''département'' of Indre-et-Loire. He became well known for his general theory of curvilinear coordinates and his notation and study of classes of ellipse-like curves, now known as Lamé curves or superellipses, and defined by the equation: : \left, \,\,\^n + \left, \,\,\^n =1 where ''n'' is any positive real number. He is also known for his running time analysis of the Euclidean algorithm, marking the beginning of computational complexity theory. Using Fibonacci numbers, he proved that when finding the greatest common divisor of integers ''a'' and ''b'', the algorithm runs in no more than 5''k'' steps, where ''k'' is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sign Function
In mathematics, the sign function or signum function (from '' signum'', Latin for "sign") is an odd mathematical function that extracts the sign of a real number. In mathematical expressions the sign function is often represented as . To avoid confusion with the sine function, this function is usually called the signum function. Definition The signum function of a real number is a piecewise function which is defined as follows: \sgn x :=\begin -1 & \text x 0. \end Properties Any real number can be expressed as the product of its absolute value and its sign function: x = , x, \sgn x. It follows that whenever is not equal to 0 we have \sgn x = \frac = \frac\,. Similarly, for ''any'' real number , , x, = x\sgn x. We can also ascertain that: \sgn x^n=(\sgn x)^n. The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero. More formally, in integration theory it is a weak derivative, and in convex functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parametric Equation
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations :\begin x &= \cos t \\ y &= \sin t \end form a parametric representation of the unit circle, where ''t'' is the parameter: A point (''x'', ''y'') is on the unit circle if and only if there is a value of ''t'' such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors: :(x, y)=(\cos t, \sin t). Parametric representations are generally nonunique (see the "Examples in two dimensions" section b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Point Of An Algebraic Variety
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]