HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff
[::MainTopicLength::#1500] [::ListTopicLength::#1000] [::ListLength::#15] [::ListAdRepeat::#3]

picture info

Selenium
Selenium
Selenium
is a chemical element with symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It rarely occurs in its elemental state or as pure ore compounds in the Earth's crust. Selenium
Selenium
(from Ancient Greek
Ancient Greek
σελήνη (selḗnē) "Moon") was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium (named for the Earth). Selenium
Selenium
is found in metal sulfide ores, where it partially replaces the sulfur. Commercially, selenium is produced as a byproduct in the refining of these ores, most often during production. Minerals that are pure selenide or selenate compounds are known but rare
[...More...]

"Selenium" on:
Wikipedia
Google
Yahoo

picture info

Standard Atomic Weight
The standard atomic weight (Ar, standard, a relative atomic mass) is the atomic weight (Ar) of a chemical element, as appearing and met in the earthly environment. It reflects the variance of natural isotopes (and so weight differences) of an element. Values are defined by (restricted to) the IUPAC
IUPAC
(CIAAW) definition of natural, stable, terrestridal sources. It is the most common and practical atomic weight used, for example to determine molar mass. The specified definition is to use many representative sources (samples) from the Earth, so that the value can widely be used as 'the' atomic weight for real life substances—for example, in pharmaceuticals and scientific research
[...More...]

"Standard Atomic Weight" on:
Wikipedia
Google
Yahoo

picture info

Vanadium
Vanadium
Vanadium
is a chemical element with symbol V and atomic number 23. It is a hard, silvery grey, ductile, and malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) stabilizes the free metal somewhat against further oxidation. Andrés Manuel del Río
Andrés Manuel del Río
discovered compounds of vanadium in 1801 in Mexico
Mexico
by analyzing a new lead-bearing mineral he called "brown lead", and presumed its qualities were due to the presence of a new element, which he named erythronium (derived from Greek for "red") since, upon heating, most of the salts turned red. Four years later, however, he was (erroneously) convinced by other scientists that erythronium was identical to chromium
[...More...]

"Vanadium" on:
Wikipedia
Google
Yahoo

picture info

Cobalt
Cobalt
Cobalt
is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal. Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought by alchemists to be due to the known metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue-pigment producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes when smelted
[...More...]

"Cobalt" on:
Wikipedia
Google
Yahoo

picture info

Calcium
Calcium
Calcium
is a chemical element with symbol Ca and atomic number 20. An alkaline earth metal, calcium is a reactive pale yellow metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossilised remnants of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name derives from Latin calx "lime", which was obtained from heating limestone. Its compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. It was isolated by Humphry Davy
Humphry Davy
in 1808 via electrolysis of its oxide, who named the element
[...More...]

"Calcium" on:
Wikipedia
Google
Yahoo

picture info

Scandium
Scandium
Scandium
is a chemical element with symbol Sc and atomic number 21. A silvery-white metallic d-block element, it has historically been classified as a rare earth element,[5] together with yttrium and the lanthanides. It was discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia. Scandium
Scandium
is present in most of the deposits of rare-earth and uranium compounds, but it is extracted from these ores in only a few mines worldwide. Because of the low availability and the difficulties in the preparation of metallic scandium, which was first done in 1937, applications for scandium were not developed until the 1970s. The positive effects of scandium on aluminium alloys were discovered in the 1970s, and its use in such alloys remains its only major application
[...More...]

"Scandium" on:
Wikipedia
Google
Yahoo

picture info

Titanium
Titanium
Titanium
is a chemical element with symbol Ti and atomic number 22. It is a lustrous transition metal with a silver color, low density, and high strength. Titanium
Titanium
is resistant to corrosion in sea water, aqua regia, and chlorine. Titanium
Titanium
was discovered in Cornwall, Great Britain, by William Gregor in 1791, and was named by Martin Heinrich Klaproth
Martin Heinrich Klaproth
after the Titans of Greek mythology. The element occurs within a number of mineral deposits, principally rutile and ilmenite, which are widely distributed in the Earth's crust
Earth's crust
and lithosphere, and it is found in almost all living things, water bodies, rocks, and soils.[5] The metal is extracted from its principal mineral ores by the Kroll[6] and Hunter processes
[...More...]

"Titanium" on:
Wikipedia
Google
Yahoo

picture info

Ruthenium
Ruthenium
Ruthenium
is a chemical element with symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. The Russian-born scientist of Baltic-German ancestry and a member of the Russian Academy of Science Karl Ernst Claus discovered the element in 1844 at Kazan
Kazan
State University in Russia
Russia
and named it after the Latin name of his homeland, Rus. Ruthenium
Ruthenium
is usually found as a minor component of platinum ores; the annual production is about 20 tonnes.[5] Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst
[...More...]

"Ruthenium" on:
Wikipedia
Google
Yahoo

picture info

Manganese
Manganese
Manganese
is a chemical element with symbol Mn and atomic number 25. It is not found as a free element in nature; it is often found in minerals in combination with iron. Manganese
Manganese
is a metal with important industrial metal alloy uses, particularly in stainless steels. Historically, manganese is named for pyrolusite and other black minerals from the region of Magnesia in Greece, which also gave its name to magnesium and the iron ore magnetite. By the mid-18th century, Swedish-German chemist Carl Wilhelm Scheele
Carl Wilhelm Scheele
had used pyrolusite to produce chlorine. Scheele and others were aware that pyrolusite (now known to be manganese dioxide) contained a new element, but they were unable to isolate it
[...More...]

"Manganese" on:
Wikipedia
Google
Yahoo

picture info

Iron
Iron
Iron
is a chemical element with symbol Fe (from Latin: ferrum) and atomic number 26. It is a metal in the first transition series. It is by mass the most common element on Earth, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust. Its abundance in rocky planets like Earth
Earth
is due to its abundant production by fusion in high-mass stars, where it is the last element to be produced with release of energy before the violent collapse of a supernova, which scatters the iron into space. Like the other group 8 elements, ruthenium and osmium, iron exists in a wide range of oxidation states, −2 to +7, although +2 and +3 are the most common. Elemental iron occurs in meteoroids and other low oxygen environments, but is reactive to oxygen and water. Fresh iron surfaces appear lustrous silvery-gray, but oxidize in normal air to give hydrated iron oxides, commonly known as rust
[...More...]

"Iron" on:
Wikipedia
Google
Yahoo

picture info

Nickel
Nickel
Nickel
is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile. Pure nickel, powdered to maximize the reactive surface area, shows a significant chemical activity, but larger pieces are slow to react with air under standard conditions because an oxide layer forms on the surface and prevents further corrosion (passivation). Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks,[4][5] and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere. Meteoric nickel is found in combination with iron, a reflection of the origin of those elements as major end products of supernova nucleosynthesis
[...More...]

"Nickel" on:
Wikipedia
Google
Yahoo

picture info

Argon
Argon
Argon
is a chemical element with symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas.[6] Argon
Argon
is the third-most abundant gas in the Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abundant as water vapor (which averages about 4000 ppmv, but varies greatly), 23 times as abundant as carbon dioxide (400 ppmv), and more than 500 times as abundant as neon (18 ppmv)
[...More...]

"Argon" on:
Wikipedia
Google
Yahoo

picture info

Copper
Copper
Copper
is a chemical element with symbol Cu (from Latin: cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a reddish-orange color. Copper
Copper
is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement. Copper
Copper
is one of the few metals that occur in nature in directly usable metallic form (native metals) as opposed to needing extraction from an ore. This led to very early human use, from c. 8000 BC. It was the first metal to be smelted from its ore, c. 5000 BC, the first metal to be cast into a shape in a mold, c
[...More...]

"Copper" on:
Wikipedia
Google
Yahoo

picture info

Zinc
Zinc
Zinc
is a chemical element with symbol Zn and atomic number 30. It is the first element in group 12 of the periodic table. In some respects zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn2+ and Mg2+ ions are of similar size. Zinc
Zinc
is the 24th most abundant element in Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest workable lodes are in Australia, Asia, and the United States
[...More...]

"Zinc" on:
Wikipedia
Google
Yahoo

picture info

Gallium
Gallium
Gallium
is a chemical element with symbol Ga and atomic number 31. It is in group 13 of the periodic table, and thus has similarities to the other metals of the group, aluminium, indium, and thallium. Gallium
Gallium
does not occur as a free element in nature, but as gallium(III) compounds in trace amounts in zinc ores and in bauxite.[5] Elemental gallium is a soft, silvery blue metal at standard temperature and pressure, a brittle solid at low temperatures, and a liquid at temperatures greater than 29.76 °C (85.57 °F) (above room temperature, but below the normal human body temperature). The melting point of gallium is used as a temperature reference point. Gallium
Gallium
alloys are used in thermometers as a non-toxic and environmentally friendly alternative to mercury, and can withstand higher temperatures than mercury
[...More...]

"Gallium" on:
Wikipedia
Google
Yahoo

picture info

Technetium
Technetium
Technetium
is a chemical element with symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive; none are stable, excluding the fully ionized state of 97Tc.[4] Nearly all technetium is produced synthetically, and only about 18000 tons can be found at any given time in the Earth's crust. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, the most common source, or the product of neutron capture in molybdenum ores. The chemical properties of this silvery gray, crystalline transition metal are intermediate between rhenium and manganese, which it lies between in group 7 of the periodic table. The most common naturally occuring isotope is 99Tc. Many of technetium's properties were predicted by Dmitri Mendeleev before the element was discovered. Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em)
[...More...]

"Technetium" on:
Wikipedia
Google
Yahoo
.