HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff
[::MainTopicLength::#1500] [::ListTopicLength::#1000] [::ListLength::#15] [::ListAdRepeat::#3]

picture info

Saprophyte
Saprotrophic nutrition
Saprotrophic nutrition
/sæprəˈtrɒfɪk, -proʊ-/[1] or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed organic matter. It occurs in saprotrophs and heterotrophs, and is most often associated with fungi (for example Mucor) and soil bacteria. Saprotrophic microscopic fungi are sometimes called saprobes; saprotrophic plants or bacterial flora are called saprophytes (sapro- + -phyte, "rotten material" + "plant"), though it is now believed that all plants previously thought to be saprotrophic are in fact parasites of microscopic fungi or other plants
[...More...]

"Saprophyte" on:
Wikipedia
Google
Yahoo

picture info

Mycelial Cord
Mycelial cords are linear aggregations of parallel-oriented hyphae. The mature cords are composed of wide, empty vessel hyphae surrounded by narrower sheathing hyphae. Cords may look similar to plant roots, and also frequently have similar functions; hence they are also called rhizomorphs (literally, "root-forms"). Mycelial cords are capable of conducting nutrients over long distances. For instance, they can transfer nutrients to a developing fruiting body, or enable wood-rotting fungi to grow through soil from an established food base in search of new food sources. For parasitic fungi, they can help spread infection by growing from established clusters to uninfected parts
[...More...]

"Mycelial Cord" on:
Wikipedia
Google
Yahoo

picture info

Mycorrhizal Fungi And Soil Carbon Storage
Soil carbon
Soil carbon
storage is an important function of terrestrial ecosystems. Soil
Soil
contains more carbon than plants and the atmosphere combined.[1] Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well
[...More...]

"Mycorrhizal Fungi And Soil Carbon Storage" on:
Wikipedia
Google
Yahoo

picture info

Lipase
A lipase (/ˈlaɪpeɪs/, /ˈlɪpeɪs/, /-peɪz/) is any enzyme that catalyzes the hydrolysis of fats (lipids).[1] Lipases are a subclass of the esterases. Lipases perform essential roles in the digestion, transport and processing of dietary lipids (e.g. triglycerides, fats, oils) in most, if not all, living organisms. Genes
Genes
encoding lipases are even present in certain viruses.[2][3] Most lipases act at a specific position on the glycerol backbone of a lipid substrate (A1, A2 or A3)(small intestine)
[...More...]

"Lipase" on:
Wikipedia
Google
Yahoo

picture info

Starch
Starch
Starch
or amylum is a polymeric carbohydrate consisting of a large number of glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants as energy storage. It is the most common carbohydrate in human diets and is contained in large amounts in staple foods like potatoes, wheat, maize (corn), rice, and cassava. Pure starch is a white, tasteless and odorless powder that is insoluble in cold water or alcohol. It consists of two types of molecules: the linear and helical amylose and the branched amylopectin. Depending on the plant, starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight.[4] Glycogen, the glucose store of animals, is a more highly branched version of amylopectin. In industry, starch is converted into sugars, for example by malting, and fermented to produce ethanol in the manufacture of beer, whisky and biofuel. It is processed to produce many of the sugars used in processed foods
[...More...]

"Starch" on:
Wikipedia
Google
Yahoo

picture info

Amylase
An amylase (/ˈæmɪleɪs/) is an enzyme that catalyses the hydrolysis of starch into sugars. Amylase
Amylase
is present in the saliva of humans and some other mammals, where it begins the chemical process of digestion. Foods that contain large amounts of starch but little sugar, such as rice and potatoes, may acquire a slightly sweet taste as they are chewed because amylase degrades some of their starch into sugar. The pancreas and salivary gland make amylase (alpha amylase) to hydrolyse dietary starch into disaccharides and trisaccharides which are converted by other enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylase. As diastase, amylase was the first enzyme to be discovered and isolated (by Anselme Payen in 1833).[1][2][3][4] Specific amylase proteins are designated by different Greek letters
[...More...]

"Amylase" on:
Wikipedia
Google
Yahoo

picture info

PH
In chemistry, pH (/piːˈeɪtʃ/) (potential of hydrogen) is a numeric scale used to specify the acidity or basicity of an aqueous solution. It is approximately the negative of the base 10 logarithm of the molar concentration, measured in units of moles per liter, of hydrogen ions. More precisely it is the negative of the base 10 logarithm of the activity of the hydrogen ion.[1] Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic
[...More...]

"PH" on:
Wikipedia
Google
Yahoo

picture info

Ion
An ion (/ˈaɪən, -ɒn/)[1] is an atom or molecule that has a non-zero net electrical charge (its total number of electrons is not equal to its total number of protons). A cation is a positively-charged ion, while an anion is negatively charged. Because of their opposite electric charges, cations and anions attract each other and readily form ionic compounds, such as salts. Ions can be created by chemical means, such as the dissolution of a salt into water, or by physical means, such as passing a direct current through a conducting solution, which will dissolve the anode via ionization. Ions consisting of only a single atom are atomic or monatomic ions
[...More...]

"Ion" on:
Wikipedia
Google
Yahoo

picture info

Maltose
Maltose
Maltose
(/ˈmɔːltoʊs/[2] or /ˈmɔːltoʊz/[3]), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose
Maltose
is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose
[...More...]

"Maltose" on:
Wikipedia
Google
Yahoo

picture info

Glucose
Glucose
Glucose
is a simple sugar with the molecular formula C6H12O6, which means that it is a molecule that is made of six carbon atoms, twelve hydrogen atoms, and six oxygen atoms. Glucose
Glucose
circulates in the blood of animals as blood sugar. It is made during photosynthesis from water and carbon dioxide, using energy from sunlight. It is the most important source of energy for cellular respiration. Glucose
Glucose
is stored as a polymer, in plants as starch and in animals as glycogen. With six carbon atoms, it is classed as a hexose, a subcategory of the monosaccharides. D- Glucose
Glucose
is one of the sixteen aldohexose stereoisomers. The D-isomer, D-glucose, also known as dextrose, occurs widely in nature, but the L-isomer, L-glucose, does not
[...More...]

"Glucose" on:
Wikipedia
Google
Yahoo

picture info

Chemoautotroph
Chemotrophs are organisms that obtain energy by the oxidation of electron donors in their environments.[1] These molecules can be organic (chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph designation is in contrast to phototrophs, which utilize solar energy. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs are commonly found in ocean floors where sunlight cannot reach them because they are not dependent on solar energy
[...More...]

"Chemoautotroph" on:
Wikipedia
Google
Yahoo

picture info

Fatty Acid
In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28.[1] Fatty acids are usually derived from triglycerides or phospholipids. Fatty acids are important dietary sources of fuel for animals because, when metabolized, they yield large quantities of ATP. Many cell types can use either glucose or fatty acids for this purpose
[...More...]

"Fatty Acid" on:
Wikipedia
Google
Yahoo

Holozoic Nutrition
Holozoic nutrition (Greek: holo-whole ; zoikos-of animals) is a type of heterotrophic nutrition that is characterized by the internalization (ingestion) and internal processing of gaseous, liquids or solid food particles.[1] Protozoa, such as amoebas, and most of the free living animals,such as animals, exhibit this type of nutrition. In Holozoic nutrition the energy and organic building blocks are obtained by ingesting and then digesting other organisms or pieces of other organisms, including blood and decaying organic matter
[...More...]

"Holozoic Nutrition" on:
Wikipedia
Google
Yahoo

Parasitic Nutrition
Parasitic nutrition is a mode of heterotrophic nutrition where a parasitic organism lives on the body surface or inside the body of another type of organism (a host) and gets nutrition directly from the body of the host. Since these parasites derive nourishment from their host, this symbiotic interaction is often described as harmful to the host. Parasites depend on their host for survival, since the host provides nutrition and protection. As a result of this dependence, parasites have considerable modifications to optimise parasitic nutrition and therefore their survival. Parasites are divided into two groups: endoparasites and ectoparasites
[...More...]

"Parasitic Nutrition" on:
Wikipedia
Google
Yahoo

picture info

Photoautotroph
Phototrophs (Gr: φῶς, φωτός = light, τροϕή = nourishment) are the organisms that carry out photon capture to acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes (e.g. in the form of starches, sugars and fats). All phototrophs either use electron transport chains or direct proton pumping to establish an electro-chemical gradient which is utilized by ATP synthase, to provide the molecular energy currency for the cell. Phototrophs can be either autotrophs or heterotrophs
[...More...]

"Photoautotroph" on:
Wikipedia
Google
Yahoo

picture info

Photosynthesis
Photosynthesis
Photosynthesis
is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities (energy transformation). This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek φῶς, phōs, "light", and σύνθεσις, synthesis, "putting together".[1][2][3] In most cases, oxygen is also released as a waste product. Most plants, most algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs
[...More...]

"Photosynthesis" on:
Wikipedia
Google
Yahoo
.