HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff







picture info

Reversible Process (thermodynamics)
In thermodynamics, a reversible process is a process whose direction can be "reversed" by inducing infinitesimal changes to some property of the system via its surroundings, with no increase in entropy. Throughout the entire reversible process, the system is in thermodynamic equilibrium with its surroundings. Since it would take an infinite amount of time for the reversible process to finish, perfectly reversible processes are impossible. However, if the system undergoing the changes responds much faster than the applied change, the deviation from reversibility may be negligible. In a reversible cycle, a cyclical reversible process, the system and its surroundings will be returned to their original states if one half cycle is followed by the other half cycle. Thermodynamic processes can be carried out in one of two ways: reversibly or irreversibly. Reversibility means the reaction operates continuously at equilibrium
[...More...]

picture info

State Of Matter
In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many other states are known to exist, such as glass or Liquid crystal">liquid crystal, and some only exist under extreme conditions, such as Bose–Einstein condensates, neutron-degenerate matter, and quark-gluon plasma, which only occur, respectively, in situations of extreme cold, extreme density, and extremely high-energy. Some other states are believed to be possible but remain theoretical for now. For a complete list of all exotic states of matter, see the list of states of matter. Historically, the distinction is made based on qualitative differences in properties. Matter in the solid state maintains a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place
[...More...]

picture info

Statistical Mechanics
Statistical mechanics is a branch of theoretical physics that uses Probability theory">probability theory to study the average behaviour of a mechanical system whose exact state is uncertain. Statistical mechanics is commonly used to explain the thermodynamic behaviour of large systems. This branch of statistical mechanics, which treats and extends classical thermodynamics, is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice
[...More...]

picture info

Chemical Thermodynamics
Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes. The structure of chemical thermodynamics is based on the first two laws of thermodynamics. Starting from the first and second laws of thermodynamics, four equations called the "fundamental equations of Gibbs" can be derived. From these four, a multitude of equations, relating the thermodynamic properties of the thermodynamic system can be derived using relatively simple mathematics
[...More...]

Quantum Thermodynamics
Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and Quantum mechanics">quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905 Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules. Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from Quantum statistical mechanics">quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium
[...More...]

picture info

Real Gas
Real gases are non-hypothetical gases whose molecules occupy space and have interactions; consequently, they adhere to gas laws. To understand the behaviour of real gases, the following must be taken into account: For most applications, such a detailed analysis is unnecessary, and the ideal gas approximation can be used with reasonable accuracy. On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, to explain the Joule–Thomson effect and in other less usual cases
[...More...]

picture info

Heat
In thermodynamics, heat refers to energy that is transferred from a warmer substance or object to a cooler one
[...More...]

Work (thermodynamics)
In thermodynamics, work performed by a system is the energy transferred by the system to its surroundings, that is fully accounted for solely by macroscopic forces exerted on the system by factors external to it, that is to say, factors in its surroundings. Thermodynamic work is a version of the concept of work in physics. The external factors may be electromagnetic, gravitational, or pressure/volume or other simply mechanical constraints. Thermodynamic work is defined to be measurable solely from knowledge of such external macroscopic forces. These forces are associated with macroscopic state variables of the system that always occur in conjugate pairs, for example pressure and volume or magnetic flux density and magnetization. In the SI system of measurement, work is measured in joules (symbol: J)
[...More...]

picture info

Isobaric Process
An isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy of the system. This article uses the chemistry sign convention for work, where positive work is work done on the system
[...More...]

State Function
In thermodynamics, a state function or function of state is a function defined for a system relating several state variables or state quantities that depends only on the current equilibrium state of the system. State functions do not depend on the path by which the system arrived at its present state. A state function describes the equilibrium state of a system. For example, internal energy, enthalpy, and entropy are state quantities because they describe quantitatively an equilibrium state of a thermodynamic system, irrespective of how the system arrived in that state. In contrast, mechanical work and heat are process quantities or path functions, because their values depend on the specific transition (or path) between two equilibrium states
[...More...]

picture info

Adiabatic Process
In thermodynamics, an adiabatic process is one that occurs without transfer of heat or matter between a thermodynamic system and its surroundings. In an adiabatic process, energy is transferred to its surroundings only as work. The adiabatic process provides a rigorous conceptual basis for the theory used to expound the first law of thermodynamics, and as such it is a key concept in thermodynamics. Some chemical and physical processes occur so rapidly that they may be conveniently described by the term "adiabatic approximation", meaning that there is not enough time for the transfer of energy as heat to take place to or from the system. By way of example, the adiabatic flame temperature is an idealization that uses the "adiabatic approximation" so as to provide an upper limit calculation of temperatures produced by combustion of a fuel
[...More...]

picture info

Polytropic Process
A polytropic process is a thermodynamic process that obeys the relation:
where p is the pressure, V is volume, n is the polytropic index , and C is a constant
[...More...]

picture info

Isenthalpic Process
An isenthalpic process or isoenthalpic process is a process that proceeds without any change in enthalpy, H; or specific enthalpy, h.

picture info

Thermodynamic Instruments
A thermodynamic instrument is any device which facilitates the quantitative measurement of thermodynamic systems. In order for a thermodynamic parameter to be truly defined, a technique for its measurement must be specified. For example, the ultimate definition of temperature is "what a thermometer reads". The question follows - what is a thermometer? There are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a thermodynamic system
[...More...]