HOME TheInfoList
 First law: In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force. Second law: In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma [...More Info...]       [...Related Items...] Newton's Law (TV Series) Newton's Law is an Australian television drama series which began airing on ABC TV on 9 February 2017. The eight part series is developed from an original concept by Deb Cox and Fiona Eagger. picture info Statistical Mechanics Statistical mechanics is a branch of theoretical physics that uses probability theory to study the average behaviour of a mechanical system whose exact state is uncertain. Statistical mechanics is commonly used to explain the thermodynamic behaviour of large systems. This branch of statistical mechanics, which treats and extends classical thermodynamics, is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice [...More Info...]       [...Related Items...] picture info Power (physics) In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. Having no direction, it is a scalar quantity. In the International System of Units, the unit of power is the joule per second (J/s), known as the watt (W) in honour of James Watt, the eighteenth-century developer of the condenser steam engine. Being the rate of work, the equation for power can be written as: ${\displaystyle {\text{power}}={\frac {\text{work}}{\text{time}}}}$ As a physical concept, power requires both a change in the physical system and a specified time in which the change occurs. This is distinct from the concept of work, which is measured only in terms of a net change in the state of the physical system [...More Info...]       [...Related Items...] picture info Routhian Mechanics In analytical mechanics, a branch of theoretical physics, Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. The Routhian, like the Hamiltonian, can be obtained from a Legendre transform of the Lagrangian, and has a similar mathematical form to the Hamiltonian, but is not exactly the same. The difference between the Lagrangian, Hamiltonian, and Routhian functions are their variables [...More Info...]       [...Related Items...] picture info Damping In engineering, the damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system is trying to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate [...More Info...]       [...Related Items...] Udwadia–Kalaba Equation In theoretical physics, the Udwadia–Kalaba equation is a method for deriving the equations of motion of a constrained mechanical system. This equation was discovered by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The fundamental equation is the simplest and most comprehensive equation so far discovered for writing down the equations of motion of a constrained mechanical system. It makes a convenient distinction between externally applied forces and the internal forces of constraint, similar to the use of constraints in Lagrangian mechanics, but without the use of Lagrange multipliers. The Udwadia–Kalaba equation applies to a wide class of constraints, both holonomic constraints and nonholonomic ones, as long as they are linear with respect to the accelerations [...More Info...]       [...Related Items...] picture info Mass Mass is both a property of a physical body and a measure of its resistance to acceleration (a change in its state of motion) when a net force is applied. It also determines the strength of its mutual gravitational attraction to other bodies. The basic SI unit of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass. This is because weight is a force, while mass is the property that (along with gravity) determines the strength of this force. In Newtonian physics, mass can be generalized as the amount of matter in an object [...More Info...]       [...Related Items...] Moment (physics) In physics, a moment is an expression involving the product of a distance and a physical quantity, and in this way it accounts for how the physical quantity is located or arranged. Moments are usually defined with respect to a fixed reference point; they deal with physical quantities as measured at some distance from that reference point. For example, the moment of force acting on an object, often called torque, is the product of the force and the distance from a reference point [...More Info...]       [...Related Items...] picture info D'Alembert's Principle D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert. It is the dynamic analogue to the principle of virtual work for applied forces in a static system and in fact is more general than Hamilton's principle, avoiding restriction to holonomic systems. A holonomic constraint depends only on the coordinates and time. It does not depend on the velocities [...More Info...]       [...Related Items...] picture info Space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework. Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e [...More Info...]       [...Related Items...] picture info Speed In everyday use and in kinematics, the speed of an object is the magnitude of its velocity (the rate of change of its position); it is thus a scalar quantity. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second, but the most common unit of speed in everyday usage is the kilometre per hour or, in the US and the UK, miles per hour [...More Info...]       [...Related Items...] picture info Torque Torque, moment, or moment of force is rotational force. Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object. In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the position vector (distance vector) and the force vector. The symbol for torque is typically ${\displaystyle \tau }$, the lowercase Greek letter tau. When it is called moment of force, it is commonly denoted by M. The magnitude of torque of a rigid body depends on three quantities: the force applied, the lever arm vector connecting the origin to the point of force application, and the angle between the force and lever arm vectors [...More Info...]       [...Related Items...] picture info Velocity The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion (e.g. 60 km/h to the north). Velocity is an important concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called "speed", being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s) or as the SI base unit of (m⋅s−1--->). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector [...More Info...]       [...Related Items...] picture info Analytical Mechanics In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics. By contrast, analytical mechanics uses scalar properties of motion representing the system as a whole—usually its total kinetic energy and potential energy—not Newton's vectorial forces of individual particles. A scalar is a quantity, whereas a vector is represented by quantity and direction [...More Info...]       [...Related Items...]