picture info

Newton's Laws Of Motion
Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows:
First law: 
In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force. 
Second law: 
In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma
[...More Info...]
[...Related Items...]


Newton's Law (TV Series)
Newton's Law is an Australian television drama series which began airing on ABC TV on 9 February 2017. The eight part series is developed from an original concept by Deb Cox and Fiona Eagger.

picture info

Statistical Mechanics
Statistical mechanics is a branch of theoretical physics that uses probability theory to study the average behaviour of a mechanical system whose exact state is uncertain.
Statistical mechanics is commonly used to explain the thermodynamic behaviour of large systems. This branch of statistical mechanics, which treats and extends classical thermodynamics, is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice
[...More Info...]
[...Related Items...]

picture info

Power (physics)
In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. Having no direction, it is a scalar quantity. In the International System of Units, the unit of power is the joule per second (J/s), known as the watt (W) in honour of James Watt, the eighteenthcentury developer of the condenser steam engine. Being the rate of work, the equation for power can be written as:
 ${\text{power}}={\frac {\text{work}}{\text{time}}}$
As a physical concept, power requires both a change in the physical system and a specified time in which the change occurs. This is distinct from the concept of work, which is measured only in terms of a net change in the state of the physical system
[...More Info...]
[...Related Items...]

picture info


picture info

Damping
In engineering, the damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system is trying to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate
[...More Info...]
[...Related Items...]


Udwadia–Kalaba Equation
In theoretical physics, the Udwadia–Kalaba equation is a method for deriving the equations of motion of a constrained mechanical system. This equation was discovered by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The fundamental equation is the simplest and most comprehensive equation so far discovered for writing down the equations of motion of a constrained mechanical system. It makes a convenient distinction between externally applied forces and the internal forces of constraint, similar to the use of constraints in Lagrangian mechanics, but without the use of Lagrange multipliers. The Udwadia–Kalaba equation applies to a wide class of constraints, both holonomic constraints and nonholonomic ones, as long as they are linear with respect to the accelerations
[...More Info...]
[...Related Items...]

picture info



Moment (physics)
In physics, a moment is an expression involving the product of a distance and a physical quantity, and in this way it accounts for how the physical quantity is located or arranged. Moments are usually defined with respect to a fixed reference point; they deal with physical quantities as measured at some distance from that reference point. For example, the moment of force acting on an object, often called torque, is the product of the force and the distance from a reference point
[...More Info...]
[...Related Items...]

picture info


picture info

Space
Space is the boundless threedimensional extent in which objects and events have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless fourdimensional continuum known as spacetime. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.
Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e
[...More Info...]
[...Related Items...]

picture info


picture info

Torque
Torque, moment, or moment of force is rotational force. Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object. In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the position vector ( distance vector) and the force vector.
The symbol for torque is typically $\tau$, the lowercase Greek letter tau. When it is called moment of force, it is commonly denoted by M.
The magnitude of torque of a rigid body depends on three quantities: the force applied, the lever arm vector connecting the origin to the point of force application, and the angle between the force and lever arm vectors
[...More Info...]
[...Related Items...]

picture info


picture info

Analytical Mechanics
In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.
By contrast, analytical mechanics uses scalar properties of motion representing the system as a whole—usually its total kinetic energy and potential energy—not Newton's vectorial forces of individual particles. A scalar is a quantity, whereas a vector is represented by quantity and direction
[...More Info...]
[...Related Items...]

