HOME TheInfoList
Providing Lists of Related Topics to Help You Find Great Stuff







picture info

Airfoil
An airfoil (American English) or aerofoil (British English) is the cross-sectional shape of a wing, blade (of a propeller, rotor, or turbine), or sail (as seen in cross-section). An airfoil-shaped body moving through a fluid produces an aerodynamic force. The component of this force perpendicular to the direction of motion is called lift. The component parallel to the direction of motion is called drag. Subsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with a symmetric curvature of upper and lower surfaces
[...More Info...]      
[...Related Items...]



picture info

Wing
A wing is a type of fin that produces lift, while moving through air or some other fluid. As such, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift. Lifting structures used in water, include various foils, such as hydrofoils. Hydrodynamics is the governing science, rather than aerodynamics
[...More Info...]      
[...Related Items...]



Langley Research Center

The Langley Research Center (LaRC or NASA Langley) located in Hampton, Virginia, United States, is the oldest of NASA's field centers.[1] It directly borders Langley Air Force Base and the Back River on the Chesapeake Bay. LaRC has focused primarily on aeronautical research, but has also tested space hardware at the facility, such as the Apollo Lunar Module
[...More Info...]      
[...Related Items...]



picture info

Camber (aerodynamics)
In aeronautics and aeronautical engineering, camber is the asymmetry between the two acting surfaces of an airfoil, with the top surface of a wing (or correspondingly the front surface of a propeller blade) commonly being more convex (positive camber). An airfoil that is not cambered is called a symmetric airfoil. The benefits of cambering were discovered and first utilized by George Cayley in the early 19th century.[1] Camber is usually designed into an airfoil to maximize its lift coefficient. This minimizes the stalling speed of aircraft using the airfoil. An aircraft with cambered wings will have a lower stalling speed than an aircraft with a similar wing loading and symmetric airfoil wings. An aircraft designer may also reduce the camber of the outboard section of the wings to increase the critical angle of attack (stall angle) at the wingtips
[...More Info...]      
[...Related Items...]



Chord (aircraft)
In aeronautics, a chord is the imaginary straight line joining the leading edge and trailing edge of an aerofoil. The chord length is the distance between the trailing edge and the point where the chord intersects the leading edge.[1][2] The point on the leading edge used to define the chord may be either the surface point of minimum radius[2] or the surface point that maximizes chord length.[citation needed] The wing, horizontal stabilizer, vertical stabilizer and propeller of an aircraft are all based on aerofoil sections, and the term chord or chord length is also used to describe their width. The chord of a wing, stabilizer and propeller is determined by measuring the distance between leading and trailing edges in the direction of the airflow
[...More Info...]      
[...Related Items...]



picture info

Laminar Flow
In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing.[1] At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids.[2] In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface.[3] Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection. When a fluid is flowing through a closed channel such as a pipe or between two flat plates, either of two types of flow may occur depending on the velocity and viscosity of the fluid: laminar flow or turbulent flow
[...More Info...]      
[...Related Items...]



picture info

Supercritical Airfoil
A supercritical airfoil (supercritical aerofoil in British English) is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range. Supercritical airfoils are characterized by their flattened upper surface, highly cambered ("downward-curved") aft section, and larger leading-edge radius compared with NACA 6-series laminar airfoil shapes.[1] Standard wing shapes are designed to create lower pressure over the top of the wing. Both the thickness distribution and the camber of the wing determine how much the air accelerates around the wing. As the speed of the aircraft approaches the speed of sound, the air accelerating around the wing reaches Mach 1 and shockwaves begin to form. The formation of these shockwaves causes wave drag
[...More Info...]      
[...Related Items...]



picture info

NACA Cowling
The NACA cowling is a type of aerodynamic fairing used to streamline radial engines installed on airplanes. It was developed by the National Advisory Committee for Aeronautics in 1927. It was a major advance in aerodynamic drag reduction, and paid for its development and installation costs many times over due to the gains in fuel efficiency that it enabled.[2] The NACA cowling enhanced speed through drag reduction while delivering improved engine cooling
[...More Info...]      
[...Related Items...]



picture info

NACA Scoop
A NACA duct,[1] also sometimes called a NACA scoop or NACA inlet, is a common form of low-drag air inlet design, originally developed by the U.S. National Advisory Committee for Aeronautics (NACA), the precursor to NASA, in 1945.[2][3] Prior submerged inlet experiments showed poor pressure recovery due to the slow-moving boundary layer entering the inlet. This design is believed to work because the combination of the gentle ramp angle and the curvature profile of the walls creates counter-rotating vortices which deflect the boundary layer away from the inlet and draws in the faster moving air, while avoiding the form drag and flow separation that can occur with protruding scoop designs.
Three intakes on an engine cowling
When properly implemented, a NACA duct allows air to flow into an internal duct, often for cooling purposes, with a minimal disturbance to the flow
[...More Info...]      
[...Related Items...]