HOME
*



picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Austria-Hungary
Austria-Hungary, often referred to as the Austro-Hungarian Empire,, the Dual Monarchy, or Austria, was a constitutional monarchy and great power in Central Europe between 1867 and 1918. It was formed with the Austro-Hungarian Compromise of 1867 in the aftermath of the Austro-Prussian War and was dissolved shortly after its defeat in the First World War. Austria-Hungary was ruled by the House of Habsburg and constituted the last phase in the constitutional evolution of the Habsburg monarchy. It was a multinational state and one of Europe's major powers at the time. Austria-Hungary was geographically the second-largest country in Europe after the Russian Empire, at and the third-most populous (after Russia and the German Empire). The Empire built up the fourth-largest machine building industry in the world, after the United States, Germany and the United Kingdom. Austria-Hungary also became the world's third-largest manufacturer and exporter of electric home appliances ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gödel Logic
In mathematical logic, a first-order Gödel logic is a member of a family of finite- or infinite-valued logics in which the sets of truth values ''V'' are closed subsets of the interval ,1containing both 0 and 1. Different such sets ''V'' in general determine different Gödel logics. The concept is named after Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imm .... References {{DEFAULTSORT:Goedel logic Set theory Mathematical logic Formal methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactness Theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent. The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces, hence the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces: a collection of closed sets in a compact space has a non-empty intersection if every finite subcollection has a non-empty intersection. The compactness theorem is one of the two key properties, along with the downward Löwenheim–Skolem theorem, that is used in Lindström's theorem to characterize first-order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the generalized continuum hypothesis, the negation of Suslin's hypothesis, and the existence of an analytical (in fact, \Delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothesis t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




ω-consistent Theory
In mathematical logic, an ω-consistent (or omega-consistent, also called numerically segregative)W. V. O. Quine (1971), ''Set Theory and Its Logic''. theory is a theory (collection of sentences) that is not only (syntactically) consistent (that is, does not prove a contradiction), but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem. Definition A theory ''T'' is said to interpret the language of arithmetic if there is a translation of formulas of arithmetic into the language of ''T'' so that ''T'' is able to prove the basic axioms of the natural numbers under this translation. A ''T'' that interprets arithmetic is ω-inconsistent if, for some property ''P'' of natural numbers (defined by a formula in the language of ''T''), ''T'' proves ''P''(0), ''P''(1), ''P''(2), and so on (that is, for every standard natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann–Bernays–Gödel Set Theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not. A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas ( membership and equali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modal Companion
In logic, a modal companion of a superintuitionistic (intermediate) logic ''L'' is a normal modal logic that interprets ''L'' by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic. Gödel–McKinsey–Tarski translation Let ''A'' be a propositional intuitionistic formula. A modal formula ''T''(''A'') is defined by induction on the complexity of ''A'': :T(p)=\Box p, for any propositional variable p, :T(\bot)=\bot, :T(A\land B)=T(A)\land T(B), :T(A\lor B)=T(A)\lor T(B), :T(A\to B)=\Box(T(A)\to T(B)). As negation is in intuitionistic logic defined by A\to\bot, we also have :T(\neg A)=\Box\neg T(A). ''T'' is called the Gödel translation or Gödel–McKinsey– Tarski translation. The translation is sometimes presented in slightly different ways: for example, one may insert \Box before every subformula. All such variants are prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel–Gentzen Translation
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic, typically by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translation include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic. Propositional logic The easiest double-negation translation to describe comes from Glivenko's theorem, proved by Valery Glivenko in 1929. It maps each classical formula φ to its double negation ¬¬φ. Glivenko's theorem states: :If φ is a propositional formula, then φ is a classical tautology if and only if ¬¬φ is an intuitionistic tautology. Glivenko's theorem implies the more general statement: :If ''T'' is a set of propositional formulas and φ a propositional formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Ontological Proof
Gödel's ontological proof is a formal proof, formal argument by the mathematician Kurt Gödel (1906–1978) for the existence of God. The argument is in a line of development that goes back to Anselm of Canterbury (1033–1109). St. Anselm's ontological argument, in its most succinct form, is as follows: "God, by definition, is that for which no greater can be conceived. God exists in the understanding. If God exists in the understanding, we could imagine Him to be greater by existing in reality. Therefore, God must exist." A more elaborate version was given by Gottfried Leibniz (1646–1716); this is the version that Gödel studied and attempted to clarify with his ontological argument. Gödel left a fourteen-point outline of his philosophical beliefs in his papers. Points relevant to the ontological proof include :4. There are other worlds and rational beings of a different and higher kind. :5. The world in which we live is not the only one in which we shall live or have lived. : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gödel's Speed-up Theorem
In mathematics, Gödel's speed-up theorem, proved by , shows that there are theorems whose proofs can be drastically shortened by working in more powerful axiomatic systems. Kurt Gödel showed how to find explicit examples of statements in formal systems that are provable in that system but whose shortest proof is unimaginably long. For example, the statement: :"This statement cannot be proved in Peano arithmetic in fewer than a googolplex symbols" is provable in Peano arithmetic (PA) but the shortest proof has at least a googolplex symbols, by an argument similar to the proof of Gödel's first incompleteness theorem: If PA is consistent, then it cannot prove the statement in fewer than a googolplex symbols, because the existence of such a proof would itself be a theorem of PA, a contradiction. But simply enumerating all strings of length up to a googolplex and checking that each such string is not a proof (in PA) of the statement, yields a proof of the statement (which is nece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel Operation
In mathematical set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ..., a set of Gödel operations is a finite collection of operations on sets that can be used to construct the constructible sets from ordinals. introduced the original set of 8 Gödel operations 𝔉1,...,𝔉8 under the name fundamental operations. Other authors sometimes use a slightly different set of about 8 to 10 operations, usually denoted ''G''1, ''G''2,... Definition used the following eight operations as a set of Gödel operations (which he called fundamental operations): #\mathfrak_1(X,Y) = \ #\mathfrak_2(X,Y) = E\cdot X = \ #\mathfrak_3(X,Y) = X-Y #\mathfrak_4(X,Y) = X\upharpoonright Y= X\cdot (V\times Y) = \ #\mathfrak_5(X,Y) = X\cdot \mathfrak(Y) = \ #\mathfrak_6(X,Y) = X\cdot Y^= \ #\mathfr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]